
CRACKING
THE CODE

on the

SINCLAIR ZX
SPECTRUM

?efS°' , &&

J'SteB*.

Pan/Personal Computer News
Computer Library

John Wilson

Cracking the code
on the
Sinclair ZX Spectrum

Pan Books London and Sydney

First published 1984 by Pan Books Ltd,
Cavaye Place, London 5W10 9PC
in association with Personal Computer News
987654321
©John Wilson 1984
ISBN 0 330 28665 X
Photoset by Parker Typesetting Service, Leicester
Printed and bound in Great Britain by
Richard Clay (The Chaucer Press) Ltd, Bungay, Suffolk

This book is sold subject to the condition that il shall not,
by way of trade or otherwise, be lent, re-sold,
hired out or otherwise circulated without the publisher's prior consent
in any form of binding or cover other than that
in which it is published and without a similar condition including
this condition being imposed on the subsequent purchaser

Contents

Introduction 5

1 Chips, Registers and Numbers 7
2 Number Crunching 29
3 Rotating and Shifting 41
4 Making Comparisons and Checking Bits 51
5 Operating Logically 59
6 Block Manipulation 64
7 A Spectrum Monitor 72
8 Program Production 84
9 Using the rom Routines 95

10 Screen and Attribute Handling 121
11 Interrupts on the Spectrum 140
12 Machine Code Miscellany 156

Appendices: 1 Z80 Instructions listed by Mnemonic 207
2 Z80 Instructions listed by Opcode 224
3 Flag operation table 241

4 Spectrum Monitor-Assembler Listing 243

Index 265

Introduction

This book is intended for people with a reasonable knowledge of
Sinclair basic and the Spectrum computer who now want to become
proficient in machine code programming.

Machine code is like basic in that it is a language for communi¬
cation with the computer, but it differs in the way that precise
instructions have to be given in order to perform even the most
simple of calculations and operations. These machine code instruc¬
tions and their use will be introduced and explained with the aid of
example programs, so that by the end of the book the reader and
user (a lot depends on practice!) will be a competent machine code
programmer.

The book starts by introducing the programmer to number repre¬
sentation and goes on to simple loading and storing techniques. It
then proceeds through each set of instructions clearly and
methodically, with plenty of examples.

After the explanation of the instruction set the use of a monitor is
introduced and a full machine code monitor listing, which can be
utilised to enter other machine code routines in this book, is pro¬
vided. This is followed by a detailed breakdown of a machine code
program.

Once these chapters have been digested the programmer can
progress to dealing with more complex techniques. These involve
using the rom routines, screen handling, interrupts, and include a
routine to handle sprites. Finally, we have a chapter which includes
some useful machine code routines to enhance your own programs
such as a sort, music, and pixel scroll routines. In the appendices
are complete listings by op code and Mnemonic of the Z80 instruc¬
tion set.

1 Chips, registers and
numbers

The Spectrum's central processing unit (cpu) or main control chip is
known as the Z80. This powerful little chip handles all the additions,
subtractions and logical operations with which the Spectrum
implements your basic and machine code programs. To communi¬
cate to this chip when calculations and operations need to be done
the user can of course type instructions in basic. However, there are
other languages which can be used. The fastest of these is machine
code which acts directly on the Z80 chip and can be very efficient.
Machine code consists of a set of simple instructions which the Z80
cpu understands and can execute, such as addition, subtraction and
comparison. This particular chip has over 700 instructions that can
be sorted into a collection of a few different types. These instruc¬
tions act upon data in the form of memory addresses and numbers.

basic is a very easy language in which to program due to the fact
that we write a line of basic almost as we would say it in English, so

that;

LET X=X+20*2+1

means set the variable x equal to the correct value of x, plus twenty
times two, plus one. In machine code programming, however, we
have to give more precise instructions at a low level, and specify
each individual operation needed to perform the calculation.

The example above could be broken down to the sequence:

'add 20 to itself
'add 1 to that resuif
'add x to that resuif

(2*20)

(2*20+1)

(X+2*20+1)

'and put the answer back in x'

It should be noted that the above is not an example of machine code
instructions but simply illustrates the precision with which machine
code operations have to be specified. Why should programmers use
this complex sequence of machine code instructions when basic is

8 Chips, registers and numbers

so easy? Let us look at an example to answer this question. First type
in this basic program and run it:

10 FOR X=163B4 TO 22527
20 POKE X,255
30 NEXT X

When run, the program very slowly fills the screen with ink. Now try
running an equivalent machine code program:

1 CLEAR 31999

10 FOR x=32000 TO 32014
20 READ a: POKE x,a
30 NEXT x
35 RANDOMIZE USR 32000
40 DATA 33,0,64,1,0,24,54,255,

35,11,120,177,32,248,201

This program pokes a sequence of machine code instructions into
the Spectrum ram. The data at line 60 is the machine code program
equivalent to the basic version given above. Each number represents
a certain instruction which the computer's 'brain', the 'Z80 chip,
executes. (Don't try to understand the code yet, just type it in!)

run the program . . . but don't blink, otherwise you will miss what
happens! As you can see from the example, machine code is incred¬
ibly fast. An efficient machine code program can execute up to 1000
times as fast as the basic equivalent. What's more, machine code is
also compact. You can write machine code routines which occupy
only a quarter of the memory that their basic counterparts would.

Why is basic so slow? Well, the reason lies in the fact that the Z80
chip (which does all the calculations for the Spectrum) can only
understand machine code. In order for it to execute a basic pro¬
gram, it first has to look up each basic keyword or token every time it
reads a line. It then takes this token and translates or interprets it to
specify the equivalent rom machine code routine so that it can then
perform the operation. This all takes time. Machine code, however,
is the Z80's 'Mother Tongue', so no translation is needed and the
code is executed immediately.

Hexadecimal and binary

All of you should know that the Spectrum (or any other computer
for that matter) stores data in terms of 'bytes'. A byte is an 8 bit
binary number which can have a decimal value of 0 to 255. In a 48K

Chips, registers and numbers 9

Spectrum there are 49152 locations in memory where bytes can be
stored. The value 49152 is obtained by the calculation 48*1024
because 1K=1024 bytes.

The Z80 chip stores numbers in groups of 8 bits, so it is known as
an 8 bit chip'. In this it is similar to the 6502 chip which is used in the
BBC Micro, Oric and Commodore machines. Other microprocessor
chips use 16 or 32 bits and are therefore known as '16 bit' or '32 bit'
chips.

To address ram the Z80 chip uses 2 bytes (or 16 bits) This means
that it can access 65536 characters, since the number of combi¬
nations of 161s and 0 s is 65536. These bits and how they represent
numbers and characters are best explained by looking at the system
known as the binary system (or 'base two system').

In the real world of handling money we count in a system known
as decimal or 'base 10 system'. We have the digits 0,1,2,3,4,5,6,7,8
and 9 which we can write to represent certain quantities.

In the decimal system we can break down the number we are
using into groups of powers of ten. That is units, tens, hundreds,
thousands, ten thousands, and soon. For example, the number 3456
can be broken down to:

3*1000
+4*100
+5*10
+6*1

(3*10 13)
(4*10 f 2)
(5*10 11)

(6*10 |0)

In the binary system we use only two digits, these being 0 and 1. In
order to represent large numbers therefore we can only write in a
series of these two digits.

Remember that the Z80 chip represents information (numbers) in
groups of 8 bits. Each of these bits may be 'off' (i.e. digit 0) or 'on'
(i.e. digit 1). The bits in a byte are numbered 0 to 7, starting from the
right.

In the binary system numbers are broken down in powers of two
(that's why it is also known as the base two system). That is to say we
break them down as factors of units (bit 0), two's (bit 1), four's (bit
2), eight (bit 3), sixteen (bit 4), thirty-two (bit 5), sixty-four (bit 6) and
one hundred and twenty eight (bit 7).

Take for example the binary number 00011001, this represents the
decimal number:

10 Chips, registers and numbers

0*128
+0*64
+0*32
+1*16
+1*8
+0*4
+0*2
+1*1

(0*2 t 7)
(0*2 T 6)
(0*2 f 5)
(1 *2 14)

(1*2 t 3)
(0*2 f 2)
(0*2 f 1)
(1*2 t 0)

25 decimal

The maximum number that can be represented in 8 bit (one byte)
binary form is therefore 11111111, which represents 255 in decimal
(128+64+32+16+8+4+2+1).

In order to deal with larger numbers the Z80 has some 16 bit
instructions. All memory addressing is done with 16 bits, so the total
number of individual bytes that can be pointed to in memory
(addressed) should be equal to the total number of combinations of
a 16 digit binary number. This will be equal to the maximum value
+1 (since the value zero is a unique combination).

To obtain the maximum value possible in a 16 digit binary number
we must evaluate 1111111111111111. This has a value of:

1*32768
+1*16384

(1*2 f 15)
(1*2 f 14)
(1*2 f 13)
(1*2 112)
(1*2 t ID
(1*2 110)
(1*2 f 9)
(1*2 t 8)
(1*2 | 7)

(1*2 t 6)
(2*2 | 5)
(1*2 f 4)

(1*2 | 3)
(1*2 f 2)
(1*2 } D

(1*2 t 0)

+1*8192
+1*4096
+1*2048
+1*1024
+1*512
+1*256
+1*128
+1*64
+1*32
+1*16
+1*8
+1*4
+1*2
+1*1
+1

65536
OR 64K (1K=1024 bytes)

Chips, registers and numbers 11

The Spectrum uses 16K of this for its basic rom, which is why the
maximum amount of ram in a standard Spectrum is 48K.

When 16 bit values are stored in memory, something strange
happens. Since 16 bit values are made from two bytes and only one
byte can be held in one memory location, it follows that a 16 bit
value must occupy two bytes in memory. The way that they are
stored is that the least significant byte (lsb), which is the right hand
group of 8 bits, is stored in the first address and the most significant
byte (msb), which is the left hand group of 8 bits, is stored in the next
address. It would appear that this was a strange way for the chip
designers to build the Z80 but the reason is that the Z80, like other
common microprocessor chips, has evolved from simpler chips that
did not have any 16 bit operations. These older chips only used 8
bits to address memory and so they could only address a maximum
of 256 bytes (1/4 K). When the newer chips were designed the extra
work involved in storing 16 bit values for addresses etc. was sim¬
plified. This was done by storing the old 8 bit address (the LSB)
followed by the rest of the new 16 bit address. This does cause some
problems for novice machine code programmers but soon you will
understand. The following diagram should simplify the explanation.

16 bit value 1010001010110101
<MSB> <LSB>

10110101

10100010

Address-^-
Address+1

Address and Address+1 can be any two addresses in ram.

Negative integer numbers

We mentioned earlier how we represent numbers on the Z80 by
having 8 binary bits to represent positive numbers from 0 to 255 i.e.
00000000 binary to 11111111 binary. To represent negative numbers
we can use a convention known as signed integer representation.
Signed integer representation uses the most significant (or leftmost)
bit of an integer to represent the sign. If the sign bit is 1 (high or set)
then the number is negative, and if it is 0 (low or reset) then the
number is positive. To get an 8 bit negative number binary repre¬
sentation we subtract the equivalent positive number value from 256

So, for example, the negative number -12 is equivalent to the
number 256-12=244 decimal or 11110100 binary. Using signed
integer representation we can represent numbers from -128 to
+127 decimal. The Z80 chip, whether adding signed or normal

12 Chips, registers and numbers

integers will deal automatically with any addition or subtraction.
The same applies for obtaining negative 16 bit values, with the

exception that bit 15 will be set to 1 if the value is negative (instead
of bit 7 as in 8 bit values). To get the 16 bit representation of -12 do
the following: 65536-12=65524 decimal or 11111111 11110100. 16
bit values can be between -32768 to +32767.

A quick way of finding the negative representation of an 8 bit or 16
bit integer is to use a method known as two's complement. We first
get the binary representation of the positive number and comple¬
ment each of it's 8 or 16 bits and then add one to our new result.
Complementing means that we transform each 0 into a 1 and each 1
is transformed into a 0. For example, suppose we wanted to find the
binary representation of the number -180 decimal. The 16 bit binary
pattern for the number 180 is 0000000010110100. The complement of
this number is:

1111111101001011
adding one + 1

1111111101001100

Since -180 is outside the range of -128 to +127 this value could not
be held in a single byte.

Another number system we need to know before we go any
further is the base 16 or hexadecimal system. Base 16 refers to the
fact that this number system has 16 digits:

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 and 15.

In order not to confuse between the number 10 and the digits 1,0 we
write the five highest digits as:

A for the number 10
B for the number 11
C for the number 12
D for the number 13
E for the number 14
F for the number 15

So the sequence of digits becomes:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Using the same principle as found in the base two and base 10
systems we break down the number in a hexadecimal system into
multiples of 16. Take, for example, the hex number 20 (h or h after a

Chips, registers and numbers 13

number distinguishes between hex and decimal numbers) so that
20h is clearly different from 20 decimal. This means
2*16+0*1=32+0=32 decimal.

The number AFh means 16*A+F*1. Since A in hexadecimal not¬
ation is 10 decimal, and F is 15, this gives 16*10+15*1=160+15=175
decimal.

The hexadecimal notation is widely used by machine code pro¬
grammers since it makes numbers easier to remember than binary
but more significant than decimal. Because the hexadecimal system
is based on 16 (10h), and 16 is 10000 in binary, there is a close
relationship between the binary system that the Z80 chip uses and
the hexadecimal notation that most programmers use. Unfor¬
tunately there is no simple relationship between the decimal and
binary systems, as the table below should illustrate:

BINARY DECIMAL HEXADECIMAL
10101011 171 AB
00010010 18 12
10000001 129 81
11110000 240 F0

8 bit hexadecimal values have up to two digits. These each represent
the value in one nybble of the byte. A nybble consists of four bits,
either the leftmost four or the rightmost four and by taking the value
of each nybble the Flexadecimal digit can be calculated. In the
example above the binary value 10101011 is shown to have a hex¬
adecimal value of AB. This can be illustrated by taking the high
nybble (1010) which equals 10 decimal (A in hex) and the low nybble
(1011) which equals 11 decimal (B in hex), then combining them in
the same order to give ABh.

So far we have only seen machine code entered by POKEing
numbers into memory. This method of writing machine code is
tedious and makes it difficult to understand and debug the code, so
the designers of the Z80 chip developed a standard set of
mnemonics in which to write Z80 code.

These Mnemonics are English-like words which (hopefully!) sig¬
nify the action a particular instruction performs. For example, the
mnemonic ret means RETurn and is equivalent to the return instruc¬
tion in basic, ie. it tells the processor to continue with the main
program after a subroutine was called.

In order to translate these mnemonics into data which the com¬
puter understands we will need to assemble them. This can be done
by hand but more often by a utility known as an assembler. The

14 Chips, registers and numbers

programmer first of all types in a program in standard mnemonics
and then the program assembles these instructions into machine
language. Most machine code programmers write assembly code
and use an assembler to create their machine code

When an assembler translates the ret instruction it puts into mem¬
ory the value for that instruction, which is 201 decimal, C9 hex¬
adecimal or 11001001 in binary.

There are plenty of good assemblers for the Spectrum on the
market ranging in price from around £7 to £14. Most of these will
work on both the 16K and 48K models. The 'Devpac' package from
Hi-Soft, as an example, is at the top of this price range, but is good
value. In addition to the assembler it comes with another package
known as a monitor. Alternatively, Chapter 7 provides you with your
own monitor program for only the cost of wear and tear on the
fingertips. This is a utility which will allow you to enter and experi¬
ment with the routines in this book.

A monitor program allows the machine code programmer to input
and look at a program in hexadecimal form. Other features often
included with it are utilities to set break points, look at the values
held in the registers (the Z80 'variables') and to move, save and load
blocks of memory. Both the Spectrum monitor provided in this
book and the Devpac monitor have all these standard features.
Devpac's also includes the capacity to move a single step at a time
through a machine code program. There is also a disassembler in
the Devpac package. This is a routine which is the opposite of an
assembler for it converts machine code binary data into Z80
mnemonics.

When seeking an assembler for your Spectrum you are advised to
buy one which allows you to assemble a program at different
addresses in memory. Most assemblers have a command org

(ORiGin) which tells the assembler the start address from which to
assemble the program. This is illustrated in the assembler listings
included in this book.

There are certain features of assembler listings that need to be
explained here otherwise confusion may occur. Assemblers have a
feature which enables them to use what are known as 'pseudo'
operators. These are used to place strings or numbers in memory
and are not standard Z80 mnemonics. They are only a feature used
in certain assemblers, including the one used for the listings in this
book.

DEFB Define Byte
Can sometimes be abbreviated to 'DB'. This places the following
data in memory. For example:

Chips, registers and numbers 15

DB 02h,04h

would place the number 2 followed by a 4 at the location where it is
being assembled.

DEFW Define Word
This is similar to DEFB but is used to place a two byte number in
memory. The low byte of the given number is placed in location
where it is assembled. The high byte will follow, as we explained
earlierwhen 16 bit values were introduced:

DEFW 7 (equivalent to DEFW 0007h)

is the same as:

DB 0,7 (equivalent to DB 00h,07h)

DEFS Define Space
The number following this Psuedo operator is the number of bytes
which we want to reserve. So the operator:

DEFS 100

Would reserve 100 bytes.

EQU Equate
This instruction is used to give values to labels. The format is a label,
followed by the EQU, followed by a number:

PLOT EQU 22E5H

The above would give the label PLOT the value 22E5 hex.

; Comment
In most assemblers the ; is used in the same manner as the basic rem

to indicate a useful remark or comment. This is very useful because
without helpful comments assemble code is harder to understand
than basic because the operations are less immediately obvious.

Another feature of machine code assemblers is the facility to refer
to memory addresses by means of labels. Instead of entering an
instruction which says 'Jump to Address 31000', we can set a label at
the address 31000. We could assign the label the name 'Fred', for
example, and then give an instruction 'Jump to Address Fred7. This
can greatly simplify our program structure and also enables mean¬
ingful label names to be assigned to sections of code.

16 Chips, registers and numbers

If you use the appendices of this book you will be able to
assemble your own machine code programs. The first thing you
need to do is to write the assembly code (Mnemonics) for your
program. I have provided an example below which will go into the
printer buffer to avoid you having to clear high memory space:

ORC 23296 ; Start the code at the printer buffer
LD HL,4000h
LD DE,4001h
LD BC,17FFh
LD (HL),0
LDIR
RET

The effect of this program is to remove all the ink from the screen
How it does so is not important currently because it is serving only
to demonstrate how you can get machine code to work without
buying an assembler program.

The org is not a part of the machine code but it shows where in
memory the machine code must be stored. This is the address into
which we will start to poke the data.

To obtain the data for each of the mnemonics above you will need
to look them up in Appendix 2. As an example, the entry for LD HL,
4000H will read:

Mnemonic Decimal Hex

LD HL,XXXX 33 XXX XXX 21 XX XX

In order to get the hex for LD HL,4000h the 4000h must be converted
into two bytes and reversed in order (due to the lsb/msb storage
convention explained earlier).

So, LD HL,4000h will assemble to 21 00 40 in hex or 33 0 64 in
decimal. Since we will be using a basic program to poke the code you
will need to calculate the decimal values to be placed in the data
statement. I have calculated the example for you but try to follow
through the procedure to make sure you understand the principles
involved.

Chips, registers and numbers 17

HEX DEC MNEMONICS
ORC 23296
LD HL,4000H
LD DE,4001H
LDBC,17FFH
LD (HL),0

21 00 40 33 0 64
17 1 64

1 255 23
54 0

11 01 40
01 FF 17
36 00
ED B0
D9

237 176
201

LDIR
RET

Now to enter this machine code program the following basic pro¬
gram could be used:

10 FOR 1=0 TO 703: PR I NT CHR$(32+INT (128*RND)); :NEXT I
20 LET A=23296
30 READ B: IF B=-1 THEN GOTO 50
40 POKE A,B: LET A=A+1: GOTO 30
50 PRINT #0: "PRESS A KEY TO CLEAR": PAUSE 1: PAUSE 0
60 RANDOMIZE USR 23296
70 DATA 33,0,64,17,1,64,1,255,23,54,0,237,176,201 ,-1

As you can probably see, this would be a reasonable way to write
small programs of up to about 100 bytes but to write your first full
machine code 48K mega-game you will need an assembler to
shorten the development time. Another considerable advantage of
using an assembler program is that you can save the source code
(assembly code or mnemonics). It than can be loaded back from
tape or microdrive and errors can be corrected in the machine or
object code.

Registers

The Z80 cpu has several registers available to the programmer. These
can be used to hold numeric values similar to basic variables but the
programmer is limited to 22 registers. Some of these registers can be
used in pairs to hold 16 bit values. The older chips such as the 6502
are unable to do this. The Z80 registers are referenced by the
names:

From these a, b, c, D, e, h, l can all hold 8 bit values and ix, iy, sp and
pc will hold 16 bit values. Registers sp, pc, f, i and r have specific
functions which will be explained later and are not used for holding
user data. In addition to these there is a second set of a, b, c, d, e, f, h

18 Chips, registers and numbers

and L registers which are usually referred to as A', B', c, d', e, f, h'

and L'. These two sets of registers cannot be used at the same time,
so in order to access the alternate set a special instruction has to be
used, 'exx' (Exchange) which flips from one register set to the other.
(Two exceptions here are the A' and F registers which are exchanged
using EXAF, AF)

As mentioned earlier, some of these 8 bit registers can be paired
off to form one sixteen bit register. The diagram below demons¬
trates how this can be done:

A F A' F'

B C B' C

D E D' E'

H L H' L'

IX

IY

SP

PC

Now let's take a more detailed look at each of the registers that we
have just introduced and their functions.

IXand IYRegisters

These are known as the Index registers. The ix and iy registers are
often used to point to tables of data and are extermely powerful
tools for accessing arrays of data by a method known as indexing.
On the Spectrum great care must be taken before using the iy index
register in your own machine code programs. A number of rom

routines require that iy contains the value 5C3Ah (23610 decimal)
otherwise they will not work correctly. The Interrupt routine also
requires this value to be in iy. Therefore if you must use iy in your
machine code, disable the interrupts and make sure that iy=5C3Ah

before calling any rom subroutines or returning to basic. Disabling
interrupts and rom subroutines are dealt with later in this book.

/ and R Registers

The i or Interrupt register is used in conjunction with a technique
known as vectored interrupt programming. This is the 280's pointer

Chips, registers and numbers 19

for alternative interrupt routines and is described in detail in
Chapter 11.

The r or Refresh register is used to refresh any dynamic ram con¬
nected to the Z80. The only purpose it serves for Spectrum pro-
grammers is its use in random number generation.

A Register

The a register is known as the Accumulator and is the main register
for performing 8 bit arithmetic and logical operations.

F Register

The f or Flag register indicates the state of certain arithmetic condi¬
tions after particular groups of instructions have been executed. A
large number of Z80 instructions set flags depending on the values
in various registers (usually a). When a flag is set, a bit in the f

register is set to 1. For example if the result of a subtraction was
zero the z flag would be set to 1. That is, bit 6 of the f register would
be on. There are other instructions that will only work if a particular
flag is set. One example of this would be retz. This means if the z
flag is set then ret (return from subroutine), otherwise do nothing.

7 6 5 4 3 2 1 0

SZXHXPA'NC

The Flag register has 8 bits which can be either high or low (1 or 0).
Each of these bits is set if certain conditions exist, although bits 3
and 5 are not actually used. If you want to see the mnemonics for
each instruction and how the flags are affected you can find them in
Appendix 3.

Carry flag

The Carry flag indicates whether there was an overflow from bit 7 of
a register. It is mostly affected by addition, subtraction or shift
instructions. By overflow we mean that, for example, adding 250 to
250 would give a value of 500. However the maximum value that can
be held in 8 bits is 255 so the actual value left would be 244. Since the
Carry flag would be set we know that the real value is 244+256 (500).
The same applies to 16 bit values where a result would exceed 65535.

Some sample instructions that use the result of this flag are:

RET C; RETURN IF CARRY FLAG SET

jpnc, address; jump to Address if carry not set

N flag

The n flag, know as the add/subtract flag, cannot be used directly by

20 Chips, registers and numbers

the programmer. It is used by the 280 chip to record whether the
last operation was a subtraction or an addition.

Parity/overflow flag

This is a dual purpose flag. When used to indicate parity the Parity
flag is set (i.e. 1) if there is an even number of bits in the byte set to
one. It is reset (i.e. 0) if the number of bits set to one is odd.

The flag can be used to represent overflow, if it is set when an
arithmetic overflow occurs during an arithmetic operation. This
might happen in an addition or subtraction operation involving two
numbers with the same sign (i.e. both positive or both negative) and
it changes the sign in the result.

Hflag

The Half carry flag is used to indicate a carry from bit 3 of a byte to
bit 4 of a byte.

The H and n flags are used by the cpu in order to do something
known as binary coded decimal arithmetic (more about this later!)

Zero flag

The Zero flag is set by certain instructions when the result of that
execution is zero.

Sign flag

The Sign flag is set by certain instructions which show the sign of a
result i.e. if the result was negative then the Sign flag would be set.
If the result was positive then the Sign flag would be reset.

HL' Register pair

These are the alternate h and l registers working as a 16 bit hl' regis¬
ter. It is included here just to serve as a warning about using hl' in
usr subroutines, hl' is used to point to the calculator stack during
usr subroutines and basic will probably crash if you return to basic

with HL' changed.

PC Register

The pc, or Program Counter is a 16 bit register that holds the address
in memory of the instruction currently being executed.

The SP Register

The sp or Stack Pointer is another 16 bit register. This one points to
the current address at the top of the stack. Unlike the term queue,
which indicates that literally the first item in is the first item out, the
stack is a term used to represent data held in the reverse order, in
which the last item placed will be the first item out. (This is
sometimes known as a lifo 'Last In First Out' list).

Chips, registers and numbers 21

Imagine a pile of books onto which more books are placed. In
order to get to the bottom of the pile the last book placed on top will
have to be the first one removed. This analogy is very similar to the
way in which the stack works on the 280.

If we wish to call a routine in machine code we use an instruction
call (This is similar to the cosub instruction in basic). When the Z80
executes a call instruction it places the return address onto the
stack. The return address is always PC+3, because the call instruc¬
tion is three bytes long and the subroutine must RETurn at the start of
the next instruction after the call. It then gets the call address and
puts this into the Program Counter (pc register). You will need to
remember that the Program Counter points to the location of the
instruction currently being executed, so the program will carry on
running from that address. When the Z80 meets a ret instruction
(REiurn) the chip then pops the return address from the stack and
places it back into the pc register.

This is very similar to what happens in a basic program when it
executes the gosub command and then returns. As well as saving
return addresses, the stack can also be used to save data. (This can
prove useful when you start to run out of registers.) For example we
can save the hl register pair by using the instruction:

PUSH HL

This means 'push the hl register pair on the stack'. We could now
use the register pair for other calculations if we wanted to, knowing
that we have a copy on the stack. To retrieve data from the stack we
use the instruction:

POP HL

This means 'pop the data on top of the stack into the hl register pair'.
It is important, however, to note the order in which we push and pop

data. For example, if we use the instructions:

PUSH HL

PUSH BC

22 Chips, registers and numbers

we must remember to pop the data in the reverse order to that in
which we originally pushed them. So to place the data back into the
same registers we would need to use the instructions:

POP BC

POP HL

If we popped the data from the stack with:

POP HL

POP BC

then it would become apparent that the register pairs had been
changed over. This can be a useful way of moving data within the
chip but care must be taken when using the stack. Problems will
arise when a push or pop instruction is missing because a ret could
pop some data and RETurn to the wrong address. A large proportion
of machine code 'crashes' are caused by programmers wrongly
using the stack in this way. Remember 'Last In First Out'
Let us examine the following code:

LD HL,0

PUSH HL
RET

The first instruction tells the computer to load the hi register pair
with the number 0. The second is the push instruction which places
the hl pair onto the stack and leaves the number 0 on the top of the
stack. The last instruction is the RETurn instruction which retrieves
the last 16 bit number on the stack and places it into the program
counter. Since the top of the stack contains 0 the program will start
to run from address 0000 — Bad news if you have not SAVEd your
program! 1

Loading and storing

In order to manipulate information from one register to the other
from ram to registers and vice-versa, we need to use what is known
as loading operations. These operations can be used on both 8 bit
and 16 bit registers and constitute the major part of the Z80 instruc-
tion set. So learn them well!

First let us look at a few 8 bit load operations:

Chips, registers and numbers 23

3E 16 LD A,22

The above instruction means 'load the a register with the value 22
decimal'. It does precisely what it says: it puts the value 22 into the a

register. The two digits on the lefthand side of the operation are its
hexadecimal equivalent, which are POKEd into memory or typed in
using a monitor. (An assembler does automatically.) We can also
load other 8 bit registers with data.

Examples

06 16 LD B,22 LOAD
06 22 LD B,22H LOAD
2E 04 LD L,4 LOAD
0E 0C LD C/12 LOAD
16 10 LD D,10H LOAD
IE FF LD E,255 LOAD
26 56 LD H,56H LOAD

B register with 22 decimal
C register with 22 hex
L register with 4 decimal
C register with 12 decimal
D register with 10 hex
E register with 255 decimal
H register with 56 hex

Here too the hexadecimal translation is given on the lefthand side of
the mnemonic.

If you look at the first two examples, which load the B register,
you might notice something similar in their hexadecimal output.
The first byte (06h) is the same in both instances. It is not a coinci¬
dence. The first byte of the instruction is known as the Op code and
tells the computer which register we are dealing with. The second
byte is the actual data which we are LOADing into the register. It is
important to note that it is not possible to have an instruction such
as:

LD A,289

'LoaDA register with 289 decimal'

This is because the number 289 takes more than 8 bits to represent
it. We can however load register pairs with 16 bit numbers.

16 bit LOADS

As we have mentioned before the Z80 chip has the facility for pairing
off registers, a feature which gives access to some powerful 16 bit
commands.

Let us recap which registers can be paired off together:

24 Chips, registers and numbers

AF AF'

BC BC'

DE DE'

HL HL'

You can see from the diagram that the registers (with the exception
of the Accumulator and Flag registers) are paired off in alphabetical
order. The ix, iy, sp and pc registers have not been included in the
diagram as these are true 16 bit registers and are not split into two
like the others.

Let us now take a look at some 16 bit load operations.

21 00 40 LD HL,16384

This means 'LoaD the hl register pair with 16384 decimal' (4000h) If
you look at the hex translation, this time there are 3 bytes to repre¬
sent the instruction. The first is the Op code for 'ld hl' and the last
two are the data. The low part of the data is the second byte and the
high part is the third byte. (Remember that the Z80 stores 16 bit
values in the opposite way to which you would write them!)

Other examples of 16 bit load operations are given below, (hh is
the high byte of a number in hex while ll is the low byte).

01 LL HH LD BC,HHLL
11 LL HH LD DE,HHLL
31 LL HH LD SP,HHLL

DD 21 LL HH LD IX,HHLL
FD 21 LL HH LD IY,HHLL

Loading from one register to another

As well as LOADing 8 bit and 16 bit numbers into registers it is also
possible to transfer information from one register into another.

Consider these examples:

78 LD A,B
79 LD A,C
6B LD L,E

The first example reads 'LoaD the A register with the B register'. If, for
example, we had the instructions:

06 02 LD B,2 ; load B register with 2

Chips, registers and numbers 25

and then added the following instruction:

78 LD A,B

we would find that the A register would take the contents of the B

register, thus ending up with the value 2.

The Z80 chip does not have 16 bit instructions such as:

LD HL,DE ; load HL pair with DE pair????

so in order to achieve the same effect it is necessary to use a
couple of 8 bit transfers, like this:

62 LD H,D ;load H register with D register
6B LD L,E ; load L register with E register

Easy, isn't it!

The only 16 bit register to register load operations allowed in Z80
code are the following which deal exclusively with the stack
pointer.

F9 LD SP,HL
DD F9 LD SP,IX
FD F9 LD SP,IY

The next mode of addressing data is very similar to the way in
which the basic instruction peek and poke work. We are going to
look at examples which load and store from locations in ram and
ROM.

3A 00 40 LD A, (16384)

The instruction above reads 'LoaD the A register with the contents
of the address 16384 (4000h). You can think of it as being similar to
the basic instruction:

LET x=PEEK(16384)

The number at the location 16384 is put into the a register. We
could also put the contents of the a register into ram by the
instruction:

32 LL HH LD (ADDRESS),A

26 Chips, registers and numbers

If we used the following instructions:

3E FF LD A,255

32 00 40 LD (16384), A

the first instruction would LoaD the a register with the value 255 and
the second would put the value of this register into the address 16384.

The Accumulator is the only 8 bit register which allows us to do this
kind of addressing. There are no instructions such as:

LD (16384)B, ;load the address 16384
with b?

One way to get over this problem would be to use the instruction:
78 LDA,B ; let A register=B register
32 0040 LD (16384),A ; put A register in 16384

Sixteen bit addressing in this mode is quite extensive; here are some
examples of the instructions allowed.

ED 4B LL HH LD BC,(HHLL)
ED 5B LL HH LD DE,(HHLL)
ED 6B LL HH LD HL,(HHLL) ; most assemblers use the faster form

of this instruction which is 2A LL HH
DD 2A LL HH LD IX,(HHLL)
FD 2A LL HH LD IY,(HHLL)
ED 7B LL HH LD SP,(HHLL)

These instructions are 16 bit load instructions so they read two bytes
from a given address. We could use:

2A 53 SC LD HL,(23635)

which reads 'LoaD the hl register pair with the contents of address
23635(5C53h). This would take the contents of the address 23635 and
place them in the L register (low byte first). Finally it would take the
contents of 23635+1 (i.e. 23636) and place it in the h register.

It is also possible to save the contents of registers at a given
address, as follows:

ED 63 00 40 LD (16384),HL ;most assemblers would use the more
efficient 22 00 40 form of this
instruction

Chips, registers and numbers 27

'LoaD at the location 16384 the value in the hl register pair/

This instruction will put the value of the l register at the address
16384 and then put the value of h at the address 16385.

21 AA 22 LD HL,22AAh ; load HL with 22AA hex
22 00 40 LD (16384)/HL

The two instructions above would load AA hex at location 16384 and
22 hex at the location 16385.

Now suppose we wanted to load a value into the a register from
an address which we did not directly know. The address can be
worked out from a calculation. We would address that value by a
method known as register indirect addressing. Sounds complicated,
doesn't it? Don't worry, it's all very easy. All this means is that
instead of giving an address directly to load from we have that
address pointed to by a register pair, as you will see.

7E LD A,(HL)

The instruction above reads: 'LoaD the a register with the contents
pointed by the address in the hl register pair'. If hl contained 16384
then the contents of that address would be put in the a register.

It is also possible to save using register indirect addressing, as
follows:

77 LD (HL),A
12 LD (DE),A

36 22 LD (HL),22h ;load 22h at the address in HL

The last instruction here is unique to the hl register pair. It is one of
the most important and powerful register pairs available on the Z80
chip.

Last, but by no means least, is the powerful index addressing
mode. These use the ix and iy registers and are extremely useful in
accessing arrays of data.

The index modes are in the form:

DD RR NN
FD RR NN
DD RR NN
FD RR NN
DD 36 NN dd
FD 36 NN dd

LD r,(IX+nn)
LD r,(IY+nn)
LD (IX+nn),r
LD (IY+nn),r
LD (IX+nn),d
LD (lY-fnn),d

28 Chips, registers and numbers

where rr depends upon the register being used and dd represents
the data, r is any of the registers a,b,c,d,e,h,i. nn is an offset with the
value of 0 to 127 & 0 to —128. This is derived from the signed binary
value of the number, which is added to the value of the index
register. The store or load is then done at the resultant address, d is
a byte value which can be loaded and stored directly.

Consider the following:

DD 21 00 60 LD IX,6000h
DD 4E 05 LD C,(IX+05)
DD 36 00 03 LD (IX+00),03
address data

6000 00
6001 02
6002 04
6003 05
6005 06
6006 07

After executing the first line the ix register is pointing to the portion
of RAM/ROM at the address 6000 hex. When the second instruction
is executed, the offset value 05 is added to the value of the ix regis¬
ter, which equals 6005 hex, and the contents of this location are put
into the c register. Thus, the c register will contain the value 06.
Note that the address in the ix register is not changed in any way.
After executing this instruction it merely accesses the contents of
that address. The last instruction:

LD (IX+00),03

goes through the similar process of working the offset address
which is 6000+0=6000 hex and this time stores the value 03 at that
address. The iy register works in a similar way . . . but a word of
warning! If you are using the iy register on the Spectrum be very
careful when mixing machine code with basic, as the Spectrum uses
the iy register to point to the system variables. The procedure, as
explained earlier when you were introduced to the iy register,
would have to be applied when using the iy register in your own
programs.

2 Number crunching

So far we have looked at the way the Z80 stores data and how it can
transfer values and control from one address to another. In this
chapter we come to the actual number crunching instructions used
in addition and subtraction. As was pointed out before, the main
advantage of the Z80 chip over other 8 bit microprocessors is that it
can handle 16 bit numbers directly, making addition and subtraction
operations that much easier. To begin with let's take a look at the 8
bit arithmetic instructions.

The two simplest number crunching instructions are dec, 'Decre¬
ment register' and inc, 'iNcrement register'. These two instructions
respectively subtract or add 1 to the value in a specified register. We
are allowed to use single registers a,b,c,d,e,l and H, with these
instructions, so the range of possible commands is:

DEC A
DEC B
DEC C
DEC D
DEC E
DEC H
DEC L

INC A
INC B
INC C
INC D
INC E
INC H
INC L

The Accumulator or a register is one of the main registers in the Z80
chip and allows 8 bit arithmetic operations which can work directly
with other registers and numbers. To add to the a register a value
held in another register we use the instruction:

ADD A,r

which means 'Add to the Accumulator the value in register r', where
r can be any register of a,b,c,d,e,h on.

If we wanted to add numbers directly to the Accumulator we
could use the instruction:

ADD A,N

30 Number crunching

where n is any 8 bit number. So for example, add a,5 would add 5 to
the Accumulator.

We can also use the add instruction in conjunction with some¬
thing known as indirect addressing. The hl register pair contains an
address where the actual number which we wish to add to the
Accumulator is stored:

ADD A,(HL)

The above instruction actually performs the operation 'add to the
Accumulator the contents of the location pointed to by the register
pair hl'. Take for example the following code:

LD A,8
LD HL,6000H
ADD A,(HL)

We'll assume we have the following data stored in memory from
address 6000 hex onwards:

Address Contents
6000h 02

6001h 03
6002h 06
6003h 07

The first instruction would set the Accumulator to 8 decimal. The hl

register pair is then set to point to the address 6000 hex. The final
instruction then gets the value from the address at hl (i.e. 6000 hex)
and adds it to the Accumulator. This leaves it with the value 10
decimal.

Pursuing the indirect method even further, it can also be used
with indexing utilising the ix or iy registers.

Using the same data and starting at address 6000 hex let us run
through the following example to demonstrate this:

LD A,0
LD IX,6000H
ADD A,(IX+0)
ADD A,(IX+3)

The first and second instructions are simple enough. These set the a

register to zero and the ix register to the address 6000 hex.

Number crunching 31

ADD A,(lX+0)

The instruction above adds the index to the address in the ix regis¬
ter. This new address is then used to point to the data which we wish
to use. Since our index is zero, the address calculated is
6000h+0h=6000h. Therefore the contents are taken from this
address and added to the accumulator, leaving it with a value of 2
after the first add instruction. The second addition is similar but uses
the index 3, which means that the data to be added is stored at the
address 6000h+03h=6003h and has the value 07. When this is added
to the Accumulator the final result will be 9.

Subtraction works on the same registers as the add instruction,
the mnemonic being sub. Again every operation is done on the a

register but the actual format of the mnemonic is slightly different as
it does not actually mention the a register. The operand follows the
sub instruction directly. For example, to add the b register to the a

register we would write:

ADD A,B

but to subtract the B register from the Accumulator we would write:

SUB B

Not too confusing, hopefully!

ADD A,A SUB A

ADD A,B SUB B

ADD A,C SUB C

ADD A,D SUB D

ADD A,E SUB E

ADD A,H SUB H

ADD A,L SUB L

ADD A,(HL) SUB (HL)

ADD A, (IX+d) SUB (IX+d)

ADD A, (lY+d) SUB (lY+d)
ADD A,N SUB N

It is useful to note that add a, a is a quick and efficient instruction for
doubling the value in the A register, sub a is a quick way of setting the
a register to zero (it works nearly twice as fast as ld a,0 and only takes

up one byte instead of two).

32 Number crunching

Using the Carry flag

There is another set of 8 bit arithmetic instructions which take into
account the state of the Carry flag. These are known as the adc (Add
with Carry) and sbc (Subtract with Carry).

In the case of addition the adc adds the state of the carry flag as
well as the given register or data. So, for example, if the a register
contained 5 and the Carry flag was high (i.e. set to 1), if we ran the
instruction:

ADC A,2

the answer left in the a register would be 5+2+1 =8. On the other
hand, if the Carry flag were to be reset we would return with the
answer 7 as with the normal addition.

When it comes to subtraction, we subtract the state of the Carry
flag from the Accumulator. So, if we had 5 in the a register and the
Carry flag was set, the instruction:

SBC A,3

would leave the answer in the Accumulator as 5-2—1=2

ADC A,A SBC A
ADC A,B SBC A,B
ADC A,C SBC A,C
ADC A,D SBC A,D
ADC A,E SBC A,E
ADC A,H SBC A,H
ADC A,L SBC A,L
ADC A,(HL) SBC A,(HL)
ADC A,(IX+d) SBC A,(IX+d)
ADC A,(IY+d) SBC A,(IY+d)

The 16 bit increment and decrement instructions work in exactly the
same manner as their 8 bit equivalents, but on pairs as opposed to
single registers. The instruction dec bc subtracts 1 from the value
held in the bc register pair, while the instruction inc de adds 1 to the
de pair. Because we are dealing with 16 bit operations we also have
the option to increment or decrement the ix, iy and sp registers.

Numbercrunching 33

INC BC
INC DE
INC HL
INC IX
INC IY
INC SP

DEC BC
DEC DE
DEC HL
DEC IX
DEC IY
DEC SP

16 bit addition is quite versatile on the Z80. It allows the user to add
(with or without Carry) other 16 bit registers to the hl, ix or iy register
pair. Subtraction, however, is limited to subtracting the registers bc,

de, hl and sp from the hl pair and we only have the use of the
Subtract with Carry instruction.

ADC HL,BC
ADC HL,DE
ADC HL,HL
ADC HL,SP
ADD IY,BC
ADD IY,DE
ADD IY,IY
ADD IY,SP

ADD HL,BC
ADD HL,DE
ADD HL,HL
ADD HL,SP
ADD IX,BC
ADD IX,DE
ADD IX,IX
ADD IX,SP

16 Bit subtraction.

SBC HL,BC
SBC HL,DE
SBC HL,HL
SBC HL,SP

Let us look at a few examples using some of these instructions.

LD HL,0432H
LD BC,0536H
ADD HL,BC

The above instructions would result in the hl pair containing
0432h+0536h=0968h.

The ADD hl,hl instruction has the same effect as multiplying by 2.
Combined with additional instructions it could be used to multiply a
number by a power of two. For example, suppose we wished to
multiply the contents in the de pair by 32. First we transfer de into hl,

then we do five add hl,hl instructions in order to multiply by 32, and
finally we transfer the answer back into de like this:

;multiply DE pair by 32

34 Number crunching

EX DE,HL
ADD HL,HL
ADD HL,HL
ADD HL,HL
ADD HL,HL
ADD HL,HL
EX DE,HL

SWOP DE AND HL
TIMES BY2
TIMES BY 4
TIMES BY 8
TIMES BY 16
TIMES BY 32
SWOP DE AND HL
ANSWER IS NOWIN DE

The first and last instructions ex de,hl mean 'exchange the de and hl

registers'. What they actually do is simply to swop the contents of
the de pair for the contents of the hl pair.

As we mentioned earlier, the Add with Carry instruction adc takes
into account the state of the Carry flag. For example, if the Carry flag
were set and we used the instruction :

LD HL,0432H
LD BC,0536H
ADC HL,BC

the hl pair would contain 0432h+0536h=0968h+1 (state of
Carry)=0969H. It is worth repeating that the only form of subtraction
available with the 16 bit set is using the $bc instruction which also
subtracts the state of the Carry flag to give the final result.
Therefore, it is sometimes necessary to clear or reset this Carry flag
before executing an sbc instruction in order to obtain the correct
result. The way to do this is very simple. We use the 1 byte
instruction:

AND A

This means 'and the Accumulator with itself. This is known as a
logical operation, a process which we will be looking at more closely
in chapter 5. All you need to know for now is that one of the effects
fo this instruction is to reset the Carry flag. Thus in order to subtract
0432 hex from 0563 hex we could use the following piece of code:

LD HL,0536H ;Put first number in HL
LD DE,0432H ; Put second number in DE

AND A ;clear the carry flag
SBC HL,DE ;do the subtraction!

This should leave the result 0536h-0432h-0 (state of Carry)=104 hex

Number crunching 35

If we had not used the and a instruction as a precaution to clear the
Carry flag and if the Carry flag was set after the execution of a
previous instruction, the result would be 0536h-0432h-1 (state of
Carry)=103H.

Jumping and calling

In Spectrum basic we transfer control from one part of a program to
another using the basic instructions goto and gosub. In order to
implement transfers in machine code we use the jump and call

instructions.

The simplest of these instructions is the jump to address
command:

C3 00 60 JP 6000H

The above example reads 'jump to the address 6000 hex' and it loads
the program counter with 6000 hex from where it will continue to
execute the machine code.

We can also specify the address to jump to by the register pairs
hl,ix and iy. For example, if we had the instruction :

JP (HL)

This would in effect load the program counter with the hl register
pair. So if the hl pair contained 1601 hex the program would jump to
the address 1601 hex.

In order to implement the equivalent of the basic statement 'if

condition then goto' we have to use something known as condi¬
tional jump instructions. There are eight conditions which can be
identified, all of which are indicated by bits set in the flags register
(F-register). Below we give all the conditional jump statements that
are allowed:

JP NO,address ;'jump if Carry flag reset (Non Carry)'
;to the address specified

JP C,address ;'jump if Carry flag set (Carry)'
JP NZ,address j'jUMPif Zero flag reset (non Zero)'
JP Z,address ;'jump if Zero flag set (Zero)'
JP P,address ;'jump if positive (Sign flag reset)'

JP M,address j'jump if minus (Sign flag set)'

JP PO,address ; 'jump if Parity odd (Parity reset)'
JP PE,address ;'jump if Parity even (Parity set)'

36 Numbercrunching

Jump relative

There is another range of jump instructions available on the Z80
known as the jump relative command. This instruction allows us to
specify an offset instead of an absolute address. The offset is a one
byte number and allows us to jump backwards by up to 128 bytes
and forwards up to 127 bytes, counted from the first byte after the
instruction. This is because by using signed integer representation
(see chapter 1) a byte can hold values between +127 and -128. The
actual instruction is written as follows:

28 dd JR dd

jump relative dd bytes, where dd is the displacement to jump. For
example, in the case below:

18 03 JR 03
00 NOP
00 NOP
00 NOP
3E 04 LD A,4

the code would load the jump past the two nop (No operation)
instructions to the instruction which loads the Accumulator with the
value 4. The displacement 02 is added to the location after the jump

instruction. Since the jump relative instruction is two bytes long the
actual address to which the program is transferred is the address of
the jump relative instruction plus the displacement plush

new address=old address-f displacement+2

|f you are using a monitor to type in a machine code program you
wiH have to work out the displacement for yourself. However, most
Z80 assemblers will let you reference addresses as labels and will
automaticcally work out the displacement needed. So you could
write the code like this:

JR Here
NOP
NOP

Here LD A,4

When assembled the displacement would be placed with the appro¬
priate value.

Like the absolute jump the relative jump also has conditional

Number crunching 37

options. However, these are limited to the testing of the carry and

the zero flags:

JR C,dd ; 'jump relative on Carry (Carry flag set)'
JR NC,dd ;'jump relative non Carry (Carry flag reset)'

JR Z,dd ;'jump relative on Zero (Zero flag set)'
JR NZ,dd ;'jump relative non Zero (Zero flag reset)'

The advantage of using the jump relative instructions as opposed to
those of the jump absolute lies in relative addressing. This takes only
two bytes as compared to the three needed for the absolute mode,
making a routine smaller in size. It also allows some particular
routines to be relocateable, that is, having the ability to be placed
anywhere in memory without having to be re-assembled.

DJNZ

The djnz 'DECrement jump on non zero' is an extremely powerful
instruction. It allows the programmer to effect a loop a specified
number of times around a portion of code, very much like the
'for... next' statements in basic. Take a look at the following
machine code program:

LD B,20H
LD HL,5800H
LD A,2

LOOP LD (HU,A
INC HL
DJNZ LOOP
RET

The first instruction ld b,28h loads the b register with the number 20

hex (32 decimal). The B register is used as a loop counter for djnz.

We then load the hl register with the two byte number 5800 hex.

This is the start of the attribute file:

LD HL,5800H

The Accumulator is LOADed with the value 2, the colour code for red
ink, black paper, bright 0 and flash 0. The next three instructions form
the main part of the loop:

LD (HL),A
INC HL
DJNZ LOOP

LOOP

38 Number crunching

The value in the Accumulator is placed at the address pointed by the
hl pair. When executed the first time round, the loop will load the
value 2 into the start of the attribute file. Next we have the
instruction:

INC HL

This means 'increment the hl register pair by one' and adds one to
the hl pair so that it points to the next address in the attribute file.
Finally we have:

DJNZ LOOP
RET

The d)nz instruction will subtract one from the b register. If the value
after this subtraction is not zero then it will jump relative to the
address specified. If it is zero then it will go on to the next instruc¬
tion which is a RETurn.

As you can see, djnz is an extremely powerful instruction. It is very
much like having two instructions in one - a subtraction on the b

register and a jump relative on non zero.

Bearing in mind that the djnz instruction uses relative and not
absolute addressing we can only use it if the portion of code we are
looping around is no longer than 128 bytes.

Calling and returning

The second method of transferring the control of a program is by
using the set of call instructions.

There are times when a program executes the same portion of
code many times or when other portions of code closely resembling
each other are run with different parameters. Instead of having
these similar routines scattered around at various different places in
memory, you could have just one copy of this code when necessary,
call it as a subroutine, very much like setting up a subroutine in basic

using the 'gosub' basic instruction.

You can call this piece of code by using the instruction call fol¬
lowed by an address. The flow of the program will transfer to this
address after storing the address of the instruction following the
call instruction. The program is then executed normally until it
reaches a ret (return) instruction, when it returns to the next instruc¬
tion after the address of the call.

The call instruction takes this syntax:

CD LL HH CALL HHLL

Number crunching 39

hh is the high byte of the address and ll is the low byte. It is possible
for calls to be nested, which means that one subroutine may call

another subroutine. If fact the number of nested calls allowed is
limited only by the amount of memory left to the programmer. A
subroutine may also call itself, a function known as recursion which
is too abstruse for us to pursue here in any depth.

Like jump, the call and RETurn instructions also have conditional

counterparts. We can call a subroutine or RETurn from a subroutine

depending on the conditions set in the Flags register:

CALL HHLL RET
CALL Z,HHLL RET Z
CALL NZ,HHLL RET NZ
CALL C,HHLL RET C
CALL NC,HHLL RET NC
CALL PO,HHLL RET PO
CALL PE,HHLL RET PE
CALL M,HHLL RET M
CALL P,HHLL RET P

There is another range of calling instructions, known as the restart
(rst) set. They differ from the others in that they are only one byte
long and are limited to CALLing one of eight addresses: 00 hex, 08
hex, 10 hex, 18 hex, 20 hex, 28 hex, 30 hex and 38 hex.

As you have probably noticed, all these addresses are in the rom

memory map which you may not find much use as we cannot write
any code there. Well that's true, but we can call some of the
routines from our own programs. Below are the calls and the object
of the particular routines.

RST 00H ;start boot up

This is a bit like typing new in basic, so is not very useful unless you
wish to return to basic from a machine code program and protect the
routine from prying eyes.

RST 08H ;error restart

This routine is used by basic to report error messages. The error
number is the byte following the restart instruction. It will give the
error report of the data plus one. Thus:

40 Number crunching

RST 08H
DB 08

will generate the error message 09 'stop statement'.

RST 10H ; print a character

This is an exteremely useful routine. It prints the character in the
Accumulator to the current channel. A channel outputs to a 'device'
which can be either the printer or various parts of the screen. We'll
see more of this in Chapter 9. A simple example for now is:

LD A,66 ; print the character B to the
RST 10H ;currentchannel

RST 28H ;floating point calculator

The number crunching routine above allows us easily to implement
complex floating point arithmetic routines in machine code using
the Rom functions. The floating point calculator is explained in more
detail in Chapter 9.

RST 30H ; make space

This is not a particularly useful routine. It simply creates space in the
workspace area. v

Finally:

RST 38H ;scan the keyboard

This routine updates the system variable LAST-K and can be used to
ascertain which keys are depressed. It is called 50 times a second by
BAS|c. It is also sometimes known as the Mode 1 maskable interrupt
routine. We II be hearing more about this routine when we get to
Chapter 11, which deals with interrupts and their uses.

3 Rotating and shifting

Rotating and shifting operations provide the programmer with the
means to manipulate the pattern of bits held in a register or a byte
memory. These instructions, which are most useful for multipli¬
cation and division by powers of two, act on most of the 8 bit
registers. They can use both indirect and index addressing modes.
All the rotate instructions use the Carry flag (which is held in the f
register) as a ninth bit, bit 8, therefore allowing the programmer to
rotate this from the left or right through the register or memory.
This should become clearer as we run through the available
instructions.

Rotating

RLC Rotate Left Circular
This instruction rotates each bit of a given register or memory byte
to the left by one bit. Bit 7 of the register or byte specified is rotated
to the Carry flag and the same value is 'wrapped round' to bit 0:

in F register

For example, if the byte on which we were operating held 10101010
the following would occur after the rlc instruction was executed.
The value of bit 7 (1) would be transferred to the Carry flag bit and to
bit 0 of the byte with each of bits 0 to 6 shifted one place to the left.
The result would be 01010101 stored in the byte, and the Carry flag
set.

The rlc instruction can act on the registers a,b,c,d,e,h,l, as well as
(hl) and (iy+index) and (ix+index). There is also a rlca instruction
which has the same effect as rlc a but is one byte shorter and twice

42 Rotating and shifting

as fast to execute. These additional,short—form, rotate instructions
on the Accumulator are available on all the rotate instructions.
These are as follows (note that d indicates the index value where
applicable):

RLCA RLC (HL)
RLC A RLC (IX+d)
RLC B RLC (lY+d)
RLC C
RLC D
RLC E
RLC H
RLC L

RL Rotate left

This instruction rotates the register left through all the nine bits,
wrapping around the carry bit value to bit 0.

The effect of this instruction is to take the sequence of bits in the
byte, add the Carry flag value as bit 8, and then shift all bits one
place to the left. The Carry flag value then goes into bit 0. Thus if we
had (1)01010101 before an rl instruction, we would end up with
(0)10101011. This would produce a result which is the original value
multiplied by two, plus the value of the Carry flag.

flag

The available instructions are:

RLA RL (HL)
RL A RL (IX+d)
RL B RL (lY+d)
RL C
RL D
RL E
RL H
RL L

Rotating and shifting 43

RRC Rotate Right Circular
The register or byte is rotated right from bit 7 through to bit 6 and so
on. Bit 0 is then rotated to the Carry flag and bit 7. This is the reverse

operation to that of rlc

RRCA RRC (HL)

RRC A RRC (IX+d)
RRC B RRC (lY+d)

RRC C
RRC D
RRC E
RRC H
RRC L

RR Rotate Right
The Rotate Right instruction has the opposite effect to that of the rl

Rotate left instruction. Bit 0 of the register or byte is rotated to the
right through the Carry, while the old Carry is rotated down to bit 7.

RRA RR (HL)

RR A RR (IX+d)

RR B RR (lY+d)

RR C
RR D
RR E
RR H
RR L

44 Rotating and shifting

Shifting

As well as the Rotate instructions, there is also available a set of shift
instructions which can make registers shift either left or right. This
differs from the Rotate instruction set in that there is no 'wrap
around' effect. Therefore one bit at either end of the byte is lost and
a zero goes into this bit. Like the Rotate set all the shifts can act on
A,B,c,D,E,H,L,(HL)(ix+d) and (lY+d).

SLA Shift Left Arithmetic

The content of the carry bit is lost and the whole byte or register
shifts to the left. Bit seven is shifted into the Carry flag, and a 0
inserted in bit 0.

c 7 6 5 4 3 2 1 0
Bits

))) i)
SLA A SLA (HL)
SLA B SLA (IX+d)
SLA C SLA (lY+d)
SLA D
SLA E
SLA H
SLA L

SRL Shift Right Logically

The srl 'Shift Right Logically' shifts the bits from the left to the right,
so is useful for dividing numbers by powers of two. Bit zero of the
register/byte is shifted into the carry bit and a zero is placed into bit
seven.

SRL A SRL (HL)
SRL B SRL (IX+d)
SRL C SRL (lY+d)
SRL D
SRL E
SRL H
SRL L

Rotating and shifting 45

SRA Shift Right Arithmetic
This is an odd instruction. Shift Right Arithmetic is identical to the
srl instruction apart from the fact that bit seven is left unchanged.
This instruction is used to divide 'signed' numbers (i.e. numbers
-127 to +128) by powers of two as it doesn't affect the sign bit.

SRA A SRA (HL)

SRA B SRA (IX+d)
SRA C SRA (lY+d)
SRA D
SRA E
SRA H
SRA L

RLD (HL) ROTATE LEFT DECIMAL
This is a single instruction which acts on both the accumulator and
the contents pointed to by the hl register pair. It actually moves 'half
bytes' called 'nybbles' from the Accumulator to a ram location and

vice versa.

Accumulator

Bits 7 6 5 4 3 2 1 0

Byte defined by (HL)

Bits 7 6 5 4 3 2 1 0

As you can see from the diagram the bottom four bits (bits 3-0) of
the location pointed by the hl register pair are shifted to the top four
bits positions (7-4). The original top four bits are placed in the lower
half of the accumulator with the original contents placed in the
bottom four bits of the ram location. If, for example, we had the hl

pair containing 6000 hex, this byte holding CB hex, and the accumu¬
lator containing 2A:

46 Rotating and shifting

Address Contents Accumulator
6000 2A CB

Then after executing the instruction

RLD (HL)

We would find that the contents of location 6000h and the accumu¬
lator would be changed to:

Address Contents Accumulator
6000 AB C2

The instruction rrd (hl) has the opposite effect, as shown in the
diagram below:

Accumulator Byte defined by (HL)

*

Bits 7 0 Bits

' 1 - ~“

7 6 5 4 3 2 1 0

As already indicated, the shift instructions are very useful for multi¬
plying and dividing by powers of two. If, for example, the Accumula¬
tor contained the value three and we had the instructions:

SLA A
SLA A

Then the result remaining in the Accumulator would be 12. Remem¬
ber that the shift instructions affect the Carry flag, so if we had
executed the instructions:

LD A,128
SLA A

the bit pattern for 128 is 1000000. Therefore when the sla a instruc¬
tion is carried out, the top bit of the Accumulator would be shifted
into the Carry flag. Zero remains in the A register leaving the Carry
flag and Zero flag set. It is easy to write small routines to multiply

Rotating and shifting 47

registers by numbers which are not multiples of two. For example to
multiply a number by 10 simply split the calculation into two parts.
First multiply the number by eight and then add twice the original
number.

MULTI 0

SLA A ;LET A=2*A
LD B,A ;LET B=A (2*original A)
SLA A ;LET A=2*A (4*original A)
SLA A ;LET A=2*A (8*original A)
ADD A,B ;LET A=A+B (10*original A)

The first two instructions:

SLA A
LD B,A

multiply the Accumulator by two and save the result in the b register.
Remember, the instruction

LD B,A

has no effect on the Accumulator but copies its contents into the b

register. Therefore at this point we have double the original number
in both the a and the b registers.

SLA A
SLA A

The two other shift instructions multiply the number by eight.
Finally, the last instruction:

ADD A,B

adds the contents of the B register, which contains twice our original
number, to the a register. This leaves the desired answer.

This method of multiplication would only work for numbers in the
range of 0 to 25. Any larger number would result in a number greater
than 255 which we are unable to fit into an eight bit byte. To perform
multiplication on two byte numbers, using shifts, we have to take
into account that a Carry may occur from the lower half of a register.
This must be shifted to the high part. Therefore to multiply the hl

register pair by two we use the instructions:

48 Rotating and shifting

;multiply lower part by two
;rotate putting carry into bit
;0 in high register.

SLA L
RL H

If we wanted to multiply the hl register pair by ten we could write:

SLA L
RL H ;2*HL
LD E,L

LD D,H ;Save in DE.ie DE=2*HL
SLA L
RL H ;4*HL
SLA L
RL H ;8*HL

ADD HL,DE ;HL=8*HL+2*HL=10*HL

Of course it would be much easier to use the add instruction to
perform the multiplication.

ADD HL,HL ;2*HL
LD E,L
LD D,H ;DE=2*HL
ADD HL,HL ;4*HL
ADD HL,HL ;8*HL
ADD HL,DE ;10*HL

This piece of machine code is much faster and more concise to use
than the previous example. However, this is not always the case.
Suppose we wanted to multiply the hl pair by 128. The first thing that
you thought of was probably to use the series of add instructions.

ADD HL,HL ;2*HL
ADD HL,HL ;4*HL
ADD HL,HL ;8*HL
ADD HL,HL ;16*HL
ADD HL,HL ;32*HL
ADD HL,HL ;64*HL
ADD HL,HL ;128*HL

A lot of instructions!

If we take a look at the bit pattern of a two byte number when we
multiply be 128 we might be able to use shift and rotate instructions
to our advantage. Let's look at the bit pattern we must get in order to
multiply a two byte number by 128:

Rotating and shifting 49

High Register Low Register, L

J. 0 0 0 0 0 0

J J J J J
T 1 ..

bis bi4 b-13 b-12 bn b10 bg b '« b7 b6 [>5 b4 b3 b >2 bi bo

The top seven bits of the low byte need to be shifted into the bottom
seven bits of the high byte. Bit 0 of the low byte will be shifted up to
bit seven and bit seven of the high byte is lost.

If we represent the bit patterns by having hn representing bit n of
the high byte and In to represent bit n of the low byte then before
we perform the multiplication we have the pattern:

h7 h6 h5 h4 h3 h2 hi h0 high byte
17 16 15 14 13 12 II 10 low byte

After multiplying a two byte number by 128 we end up with the bit
pattern:

h0 17 16 15 14 13 12 II high byte
10 0000000 low byte

Notice that the first seven bits of the low byte will always be set to
zero. Looking at the pattern we can see that we can get the new high
byte pattern by shifting the old low byte to the left one. Before we
do this we can put h0 into the Carry flag using the instruction:

SRL H

Now we have bit 0 of the h register i.e. h0 in the Carry flag. We can
now get the pattern we need for our new high byte in the low byte l

register by using the instruction.

RR L

This puts the Carry (containing the old value h0) into bit seven of the
low byte. All the other bits are shifted to the right forcing the carry
into the topmost bit. We now have the pattern we want for the H

50 Rotating and shifting

register in the l register, so we transfer this by a simple load
command:

LD H,L

Finally, we set bit seven of the low byte to the contents of the Carry
which is the bit 10. We do this by first setting the l register to zero
and then rotating the Carry through to bit seven:

LD L,0
RR L

So our code for multiplying the hl register pair by 128 looks like this:

MULT128: SRL H
RR L
LD H,L
LD L,0
RR L

The code is much smaller and faster to use than the series of add
instructions. This portion of code is as much as 50% faster than the
equivalent shown earlier. Arithmetic using bit manipulation is a little
difficult to grasp at first but its implications are enormous. Screen
addresses, for example, can be calculated much faster, giving games
of infinite quality. Therefore it's very worthwhile to take some time
to learn. Meanwhile, I'll end the chapter by giving you a routine to
divide the hl register pair by 128 and let you find out how it works.

SLA L
RL H
LD L,H
LD H,0
RL H

DIV128:

4 Making comparisons
and checking bits

The Compare Instruction

A compare instruction operates in a similar fashion to a subtraction
operation, except that the Accumulator is not changed. Instead,
various flags are set or reset according to the result.

This instruction is most useful when used in conjunction with the
Z80's conditional call and jump instructions and can be used to
implement machine code equivalents of such basic statements as:

IF X>N THEN GOTO ADDR
IF X<N THEN GOTO ADDR
IF X=0 THEN GOTO ADDR
IF X<>0 THEN GOTO ADDR

The compare instruction is limited to comparisons between eight bit
numbers specified directly, indirectly, or contained in registers.
Suppose we wanted to compare the current value held in the Accu¬
mulator with the number 128 decimal.

We would use the instruction:

CP 128

which reads 'compare the current Accumulator value with the
number 128'. This will set the Zero flag if the number in the Accumu¬
lator is equal to 128. The Carry flag will be set and the Zero flag reset
if the number is greater than 128. Both the Carry flag and Zero flag
would be reset if it was less than 128.

The following routine is a good example of the use of the compare

instruction with conditional branches to simulate the basic language
if ... then ... else structure. The routine compares the a register with
the b register and branches off to certain addresses, depending on
whether the a and b registers are found to be equal, greater than, or
less than a.

52 Making comparisons and checking bits

CP B
JR Z,EQUAL
JR C,BGREAT

LESS A:

The first instruction 'Compare the B register with the A register' sub¬
tracts the b register from the A register. The actual result is not
updated to the accumulator and only affects the flags.

If the a register was equal to the b register then the Zero flag
would be set, causing the program to jump to the address labelled
equal. If the they were not equal, then the program would carry on
to the next instruction:

JR C,BGREAT

If the Carry flag was set this would indicate that the B register was
greater than the Accumulator, causing a branch to the label bgreat. If
no branch occurred this would mean that the b register was less than
the a register, causing the program to arrive at the label lessa.

CP n CP (HL)
CP A CP (IX+dd)
CP B CP (lY+dd)
CP C
CP D
CP E
CP H
CP L

Set Bit and Reset

There are other bit instructions in the Z80 set which allow us to set,
reset or test individual bits in a byte.

The SET instruction
The 'set' instruction allows us to set a particular bit in a byte. We can
test individual bits in a register or a ram location. The format of the
set instruction can be any of the following forms:

Making comparisons and checking bits 53

SET n,r
SET n,(HL)
SET n,(IX+dd)
SET n,(IY+dd)

where n is the bit number we wish to test 0-7 and dd is an offset in
the range -127 to 128

For example, the instruction:

SET 4,A

would set bit 4 of the Accumulator.
We can also use the indexing addressing mode to set and reset

bits. If, for example, the iy register pointed to the address 6000H and
the contents of its adjacent memory locations were as below:

Address Contents
6000H 22h
6002h 00h
6002h 08h

Then the instruction set 4, (iy+2) would have the following effect:

address contents
6000H 22h
6001H 00H
6002H 18h

The contents of location 6002 hex are changed to 18 hex=24 decimal

The RES instruction
This has the opposite effect to the set instruction; it REsets a bit in a
byte or ram location.

The BIT instruction
The bit instruction allows us to test for individual bits of a register or
byte. The results of the test are signified by resetting or setting the
Zero flag. If the bit tested was zero then the Zero flag would be set
and, if not, the Zero flag would be reset.

BIT 7,A

The above instruction would read Test bit 7 of the a register'.
Therefore, if the a register contained 128, which is 10000000 binary,

54 Making comparisons and checking bits

then the instruction would reset the Zero flag as bit seven is set to 1.
If, however, we used the instruction:

BIT 0,A

with the same contents in the accumulator the Zero flag would be
set, as bit 0 is zero.

The bit instruction is very useful because it does not corrupt
anything we are testing. Similar to the compare instructions, it affects
the bits in the flag registers only.

Spectrum INs and OUTs

The Z80 chip needs to interface to other devices such as the
keyboard and a cassette recorder so that the user can communicate
with the computer. There are two methods what we can use to
communicate to these devices. One is known as memory mapping,
that is PEEKing or POKEing, the other is by port addressing. A port is a
gateway to these devices which can be read by using the instruction
'in' or written to by using 'out'. There are 256 of these ports on the
Sinclair computer. Most can be used by electronics buffs, to link up
to devices such as speech synthesisers and sound chips.

There are two instructions in basic, 'in' and 'out' which allow us to
gain access to these ports. Frequently, these instructions are used to
scan the keyboard or output to the speaker to produce noises.

The keyboard is divided into 8 rows of 5 keys each and the actual
syntax of Spectrum basic to read the keyboard uses a two byte
number. For example:

LET X=IN 61438

scans the keys 0 to 6 on the top row of the keyboard. The other
addresses and the keys they scan are given below:

ADDRESS HEX KEYS SCANNED
32766 7FFE SPACE,SYMBOL SHIFT,M,N,B
49150 BFFE ENTER, L,K,J,H
57342 DFFE P,0,l,U,Y
61438 EFFE 0,9,8,7,6
63486 F7FE 1,2,3,4,5
64510 FBFE Q,W,E,R,T
65022 FDFE A,S,D,F,G
65278 FEFE CAPS SHIFT,Z,X,C,V

Making comparisons and checking bits 55

So if we wanted to scan for the bottom row of keys from space to the
letter b we would use the basic instruction:

LET X=IN 32766

A value is returned in the variable X depending on which keys are
pressed. There are five bits which represent the state of each row on
the keyboard. If a particular bit is low (i.e. 0) then this means that a
key is depressed, and if no keys were depressed then all bits would
be high. In the table above the key values have been given in bit
order, so if we were scanning the keys 1 to 5 then bit 0 would
indicate the state of the key 1 ,bit 1 the state of key 2 and so on.

The other 3 bits returned when scanning the keyboard are not
used and are unpredictable (mainly because of the different models
of spectrums available) so it is wise not to compare the values read
unless you mask out the first five bits. Masking means removing bits
according to a pattern. To mask the top three bits you would have to
do res 7, r res 6, r and res 5, r to set them all to zero.

The IN instruction
In machine code to read a port we use the instruction:

IN A,(port)

The value port is the port address which is a one byte number in the
range 0-255. This port is read and the value is returned in the
Accumulator. How do we use this instruction to scan the various
lines on the keyboard? Well, if you look closely at the address which
you scan in basic to read a particular row you will notice that the low
bytes of each address are all FE hex,254 decimal. The port address
and the high bytes all differ from each other.

To read a set of keys in machine code we first load the Accumula¬
tor with the high byte of the line we wish to read and then execute
the instruction:

IN A,(0FEH)

So for example, if we wanted to scan the keys 0 to 6, we would write
the following code:

LD A,0EFH ;SELECT LINE 0-6
IN A,(0FEH) ; READ PORT

Now, if we wanted to test if the key 0 was pressed we could use the
bit instruction:

56 Making comparisons and checking bits

BIT 0,A ;Testfor"0"

This would set the Zero flag if the key was pressed or reset the flag if
it was not pressed. °

It is an easy matter to read a set of keys by using the compare
instruction:

LD A,0FBH ;select keys Q to T
IN A,(0FEH) ;read key board port
AND 31 ;mask off lower 5 bits

This portion of code sets the Zero flag if all the keys Q,W and E are
pressed.

There is another form of the in instruction which allows us to
specify the port by the value in the c register. The register in which
the value is read can also be chosen from the set a,b,c,d,e,h on.

The code:

LD C,0FEH
LD A,0FBH
IN E,(C)

reads the line Q to t and places the value read in the e register.

The OUT instruction

The 'out' instruction is often used to generate sound and output to
the cassette system. The port which controls the small pisa speaker
is at the address 0FEh,254 decimal. This also has the ability to change
the screen border colour. The values of output to this port is in the
format shown below:

7 6

Speaker Border

1 0

Unused Microphone

PORT 254

The first three bits (bits 0-2) of the byte are used for the border
colour. Bit 3 is used to control the ear and mic sockets so that data

Making comparisons and checking bits 57

can be sent and read to and from a cassette unit. Bit 4 is used to
pulse the (so-called!) speaker in the Spectrum.

Sound generation on the Spectrum is a simple matter of pulsing
bit 4 of port 254 high and then low for a short period of time. We
would set bit 4 (i.e. to 1) and hold it high for a short time and then
set it low (0) and hold it at this level for the same period of time. The
delay we have between 'flipping' bit 4 of the port determines the
frequency or note we get from the speaker. A long delay produces a
low frequency and a short delay a high frequency. To output the
value in the Accumulator to a port we use the mnemonic:

OUT (addr),A

This simply reads 'ouTput the value in the Accumulator to the port
address' So to turn the speaker on we would use the instructions:

LD A,16
OUT (0FEH),A

Notice how we first load the Accumulator with 16. All this does is to
set bit 4 high, which when sent to the port turns the speaker on. The
following program demonstrates how the out instruction can work
to generate sound. Both the assembler mnemonic listing and a basic

listing have been given, with which the machine code can be
loaded. Line 20 of the basic program changes the low bytes of the
values for the duration and the frequency.

Assembler Listing

ORG 28000D

JP NOISE ;JUMP TO MAKE A NOISE

SOUND;

LD A, 10H ;MASK SPEAKER

OUT (0FEH), A

CALL DELAY

XOR A

OUT (0FEH), A

CALL DELAY

;SO BIT 4 IS HIGH

;TURN ON SPEAKER

;AND KEEP HIGH

;FOR A SHORT WHILE

;TURN BIT 4 OFF

;TURN SPEAKER OFF

jAND KEEP IT OFF

; FOR A SHORT WHILE

RET

58 Making comparisons and checking bits

DELAY:

LD B,D

LD C, E

LOOP:
DEC BC
LD A, B
OR C
JR NZ,LOOP
RET

DELA EBU 100
DURAT ESU 100

NOISE:
LD DE,DELA
LD HL, DURAT

BUZZ: CALL SOUND

DEC DE
DEC HL
LD A, L
OR H
JR NZ, BUZZ

RET

END

jTRANFER DE TO

jBC REGISTER PAIR
)IE. PLACE DELAY IN
;BC REGISTER

; DECREMENT BC REGISTER PAIR
jAND REPEAT

{UNTIL BC PAIR IS ZERO
{RETURN AFTER FINISHING
j DELAY

;DELAY
;DURATION

{GET DELAY
{GET DURATION
{MAKE A SOUND USING
{DELAY AND DURATION
{SUBTRACT ONE OFF DELAY
{SUBTRACT ONE OFF DURATION

{REPEAT SOUND UNTIL
{DURATION IS ZERO.

BASIC Program Listing

10 FOR A=1 TO 100
20 POKE 28029,A: POKE 28026,A
30 FOR X=1 TO 20
40 RANDOMIZE USR 28000
50 NEXT X
60 NEXT A

5 Operating logically

There are three logical operations available in the Z80 instruction
set: and, or and xor. These are all 8 bit operations which are best
explained by looking at a series of diagrams and what are known as
'Truth Tables'. As explained in Chapter One numbers are repre¬
sented in the computer by a series of 0's and 1's called bits and the
Z80 groups 8 of these bits together to form a byte. Logical opera¬
tions are performed on all 8 bits of a byte, and transform their values
as described below.

AND Operations

The and function operates on the corresponding bits of two bytes. If
both corresponding bits were 1, then our result (another byte) after
'ANDing' these two bytes would set that bit to 1. If either or both of
the bits were zero then the resulting bit would be zero. Look at the
simple circuit diagram below:

This diagram has two switches, labeled a and b, a power supply and a
light bulb. If we take the state of a closed switch as representing 1
and the open state as 0, then in order to switch the light on we have
to have both switches on, i.e. then are both set to 1. We can
represent the possible combination of the switches and their effec¬
tive result on the light bulb by a truth table. The final result is 1 if the
light bulb lights and 0 if it doesn't.

60 Operating logically

and TRUTH TABLE

A B AANDB

0
0
1
1

0
1
0
1

0
0
0
1

As you can see Switch a and switch b have to be closed to make the
light bulb light up.

When we do a logical operation in machine code all the opera¬
tions act on the Accumulator. The and operator is useful for picking
up bits which we want to examine. This is known as 'masking'. If we
had the code:

LD A,01001010B
AND 00000111B

Since the data is in binary we require the 'b' suffix after the numeric
value. The second operation is the and function. It takes each bit of
the data and and's it with the corresponding bit in the accumulator:

01001010
00000111 AND

00000010=2 decimal

AND instruction set

AND n AND (HL)
AND A AND (IX+dd)
AND B AND (lY+dd)
AND C
AND D
AND E
AND H
AND L

OR Operations

The OR function is analagous to the circuit diagram below:

Operating logically 61

As you can see either one of the switches can be on to set the light
on. Now looking at the possible combinations of switching in this
circuit we get the following truth table:

or TRUTH TABLE

A B A ORB

0 0 0
0 1 1
1 0 1
1 1 1

The or operator is useful to set a series of bits in the Accumulator.

LD A,10101101B
OR 11100000B

The above code would set the top three bits in the Accumulator.

10101101
OR 11100000

11101101=237 decimal

62 Operating logically

OR instruction set

OR n OR (HL)
OR A OR (IX+dd)
OR B OR (lY+dd)
OR C
OR D
OR E
OR H
OR L

XOR Operations

The xor 'exclusive or' operator is a little more difficult to explain
with the aid of a circuit diagram but is just as easy to understand. It is
similar to the or operator but either, not both bits, may be high to
give a high output

xor TRUTH TABLE

A B A XOR B

0 0 0
0 1 1
1 0 1
1 1 0

The xor operator is used to complement bits in the Accumulator and
is sometimes known as toggling. What was previously on would be
turned off, and what was off would be turned on. This instruction
would be ideal for turning lights on and off connected to a com¬
puter. If, for example, we had the location at the address labelled
light linked to some hardware which turned on a light if it contained
1 and turned the light off if it contained a zero, then the following
program would generate a flashing strobe:

LD B,0 ;set delay
LD A,1 ; set state of switch

TOG: XOR 1 ;toggle switch
LD (LIGHT),A ;turn light on or off

DELAY: DJNZ DELAY ;short delay
JR TOG

The b register is loaded with zero which is used as a counter in a
delay loop to hold the light on or off for a short period of time.

Operating logically 63

Because the djnz instruction will decrement b before testing it,
giving b a start value of 0 causes 256 loops round the djnz.

LD A/I

The Accumulator is then set to 1 and toggled, leaving zero in the
Accumulator since 1 xor1=0

TOC: XOR 1
LD (LIGHT),A

The load instruction turns the light on or off according to the result
in a, so first time round this would turn the light off. We now leave
the light in this state for a period of time using a djnz instruction
which counts from zero to 255 then back to zero again:

DELAY: DJINZ DELAY

We now come to the last instruction which transfers program con¬
trol back to the address tog:

JR TOG

This time, with a register containing zero the exclusive or function
will set the a register to one, producing a strobing effect.

XOR instruction set

XOR n XOR (HL)
XOR A XOR (IX+dd)
XOR B XOR (lY+dd)
XOR C
XOR D
XOR E
XOR H
XOR L

6 Block manipulation

Block instructions give the Z80 the ability to move or compare
blocks of data automatically or semi-automatically. A feature not
found on any other 8 bit microprocessor on the market today.

A common use of block move instructions is to reduce screen
flicker in games. A technique I will show you later. First, let us look
at the block compare instructions. There are four instruction con¬
cerned with searching for a particular value ('key') in a block of data.
To search for this key we can use any one of the following
instructions:

CPIR
CPDR
CPI
CPD

CPIR
The a register is LOADed with the value which we are searching for
(the 'key'). The hl register pair is LOADed with the address of the start
of the block we wish to search, and the bc register pair is set up to
contain the number of bytes we want to search through. The cpir

instruction is used to automatically go through all the data, com¬
paring the contents at each address until it either finds the key it is
searching for or until it has exhausted the search. This is signified by
the bc register containing 0.

If the key is found then the Zero flag is set and the hl register pair
points to the next address after the key. So the cpir can be thought
of as three instructions INC hl, cp (hl) and dec bc.

Take a look at the following example:

Block manipulation 65

STRING: DEFM "ABCDEFGH
SEARCHFORWD: LD HL,STRING

LD BC,8
LD A,"G"
CPIR

JR Z, FOUND
NOTFOUND:

FOUND: DEC HL

The first line contains the assembler psuedo operator defm 'DEFine
Message' which tells the assembler to place the string "abcdefgh" in
memory when the program is being assembled. As you can see the
hl is LOADed with the start of the string and bc the number of bytes
we wish to search through. The Accumulator contains the key "g",
which we want to seek. The cpir instruction will find this key (as it is
contained within the string) and cause the program to jump to the
address at the label found. At this point we subtract the hl register
by one to point to the actual address where the key is.
CPDR
The cpdr instruction is similar to the cpir instruction but the hl regis¬
ter pair points to the end of the block of data and the search is made
backwards. This time when a key is found the Zero flag is set as
before, but the hl register pair will point to one less than the address
where the key was found.

STRING: DEFM "ABCDEFGH"
SEARCHBACK: LD HL,STRING+8

LD BC,8
LD
CPIR

A,"G"

JR Z,FOUND
NOTFOUND: •

FOUND: INC HL

As you can see, our code for searching for a key is similar to the last
subroutine searchforwd. However we start off with LOADing the hl
register pair with the address of the end of the string:

LD HL,STRING+8

66 Block manipulation

This kind of instruction is allowed on most assemblers and all it does
is to add the offset (+8) to the address of the label to get the
resultant address. When the key is found it arrives at the label
found. However, this time the hl register pair will point to the
character "f" so to correct this we amend the hl register pair with
instruction:

FOUND: INC HL

CPIandCPD

These are known as semi-automatic instructions. If we use a cpi

instruction then it will compare the a register with the contents of
the hl register. The hl register pair will be incremented and the
contents oftheBC pair will be decremented. Flags will be set accord¬
ing to the result of the comparison and the subtraction of the bc

pair. The two most significant flags to test are the po flag (Parity Odd)
and the Zero flag. If the key is found then the Zero flag is set. On the
other hand if the search is exhausted and the key is not found then
the pat flag is set. These instructions are useful when we are search¬
ing through non-continuous data. For example, if we wanted to
search though a string and the data we are seeking occurs every
three bytes of the string, then we could use the following code:

LD HL,STRING
LD BC,LENGTH
LD A,KEY

LOOK: CPI

JP Z,FOUND
JP PO,NOTFOUND
INC HL
INC HL
JR LOOK

; SET OF START OF STRING
;SET LENGTH
; KEY TO SEARCH FOR
;COMPARE (HL) WITH A REG
; DECREMENT BC
;AND INCREMENT HL
; FOUND KEY
;EXHAUSTED SEARCH,NOT FOUND
;SKIP PASS
; UNWANTED DATA

;KEEP SEARCHING

The routine will exit to the memory address specified by the label
found if the key is in the string or to that given by label notfound if
the key is not in the string. Notice that there are only two inc hl

instructions, not three. This is because the cpi instruction has
already incremented the hl pair.

Block transfer

The Z80 is unique amongst 8 bit microprocessor chips in possessing
a set of block transfer instructions. These allow blocks of data to be

Block manipulation 67

moved around within memory utilising just four instructions. The hl

register is LOADed with a 16 bit address which points to the start of
the block to be moved. The bc register contains the numbers of
bytes in that block which we wish to move. The de register contains
the destination address where the first byte of data is to be stored.
After setting up these registers we could use any one of four block
move instructions. Like the Block Compare set of instructions the
Block Transfer possibilities allow for two automatic and two semi¬
automatic instructions. The two instructions ldir (LoaD increment
and Repeat) and lddr (Loao Decrement and Repeat) are the two
automatic block instructions. They allow us to move whole blocks of
memory simply by executing the instruction once.

LDIR
The ldir instruction is used to move data which is held in a continu¬
ous sequence of memory locations. The hl registers are set up to
point to the start of the data block, the de pair is set up to point to
the start of the destination and the bc register the number of bytes
to move. When executing the ldir instruction the contents of the
location pointed by the hl pair is copied to the location pointed to
by the de pair. Both the hl and the de register pairs are incremented
to point to the new data and destination locations while the bc regis¬
ter pair is decremented. This transfer continues until the bc register
pair reaches zero, then the Z80 goes onto the next instruction.

Block move instruction LDIR instruction

LDDR
The lddr instruction is similar to the ldir but the hl register pair and

68 Block manipulation

de register pair point to the end of the block and destination
addresses. The transfers are made as with the ldir instruction but
the hl and de pairs are decremented to point to the new data and
destination addresses. Again the bc is decremented and the transfer
continues until the bc register has reached zero.

Most games programmers use the block move instructions to move
vast amounts of data to the screen. When a lot of information is
needed to be drawn to the screen this can result in the TV display
flickering. To reduce this flicker it is possible to draw the data on a
dummy screen unseen by the player. This dummy screen can then
be moved to the actual screen using the block move instruction.

If you imagine that we have set up a screen full of data at the
address C000 hex and we wish to move it to the screen which is at
the address 16384 or 4000 hex. We might use the following code:

;set up dummy screen

HL,C000H ;HL points to dummy screen
DE,4000H ;DE points to real screen
BC,1B00H ;BC contains number of bytes

;move it!

The hl register points to the start of the dummy screen which is C000
hex and the de is set up to point to the start of screen. The bc register
is set up to contain 1B00 hex or 6912 decimal, the number of bytes

LD
LD
LD
LDIR

Block manipulation 69

contained in the display file. When we execute the ldir instruction it
moves 6912 bytes starting from the location C000 hex to the screen,
reducing screen flicker to a minimum.

The two semi-automatic instructions ldi (LoaD and increment) and
ldd (LoaD and Decrement) are used similarly to the cpi and cpd
instructions when the data is non-continuous or we wish to stop
moving data on certain conditions.

The parity odd flag is affected by the two instructions indicating that
bc has reached zero when the parity odd flag is set. If we wanted to
write a routine which would move a block of data to the screen from
C000 hex. until we reach a zero byte, then the following code could

be used:

MOVE:

LD HL,C000H ; point to start address
LD DE,4000H ;point to destination address
LD BC,1B00H ; maximum number of bytes to move
LDI ; move one byte (HL)->(DE)

; DE=DE+1 :HL=HL+1: BC=BC-1
RET PO ; PARITY ODD FLAG set, all done
LD A,(HL) ;get next contents
AND A ;test for zero
JR NZ,MOVE
RET ; retu rn we have reached a zero!

The routine will move at least one byte as the test for a zero byte is
made after the ldi instruction. The transfer is complete if the parity

odd flag is set, indicating that we did not encounter a zero byte in
the dummy screen and the bc register reached zero. It will exit when
we reach the first zero byte. The and A is used here to test for zero. A
more obvious method would be CP0 (compare with zero) but and a is
more efficient as it is faster to execute and uses less memory space.
The and A will leave the contents of a unchanged since any bit that is
AND'ed with itself will remain unchanged (see the Truth Table for and

in chapter 5). The and instruction will set the flags according to the
eventual contents of a so this is an easy way of setting flags, ora

would be equally suitable for this purpose but xor a would clear the

A register to zero.

Miscellaneous instructions

The next (and last) batch of five instructions that will be explained in
this book all operate on the Accumulator or flag register, so they

have been grouped

70 Block manipulation

CPL complement accumulator

The Complement instruction simply replaces 0's for 1's and vice
versa.

For example:

LD A,187 (10111011 binary)
CPL

The a register will contain 68 (01000100 binary) after executing the
Complement instruction.

NEG Negate accumulator

The Negate instruction has the effect of multiplying the number by
-1. It changes the number's sign (not just the sign bit!)

For example:

24 hex (36 decimal) becomes DC hex (-36 decimal)

This instruction performs the 'two's complement' on the contents of
the Accumulator. It is directly equivalent to the pair of instructions:

CPL
INC A

CCF Complement Carry Flag

This changes the Carry flag to a 1 if it was a 0 and vice versa.

SCF Set Carry Flag

This instruction forces the Carry flag to a 1.

DAA Decimal Adjust Accumulator

This instruction is used to add numbers which are represented in
Binary Coded Decimal (bcd) form. The decimal numbers 0 to 99 can
be represented in one byte by splitting it into two sets of 4 bits each,
called nybbles. The left nybble is the number of tens in the number
and the right nybble represents the number of units. For example,
the number 29 can be represented by the bcd number 0010 1001 (the
8 bit binary number has been split into two nybbles to make it easier
to read.)

When we want to add or subtract two bcd numbers we use the
normal add or sub instructions followed by the daa instruction. The h

and n flags are used by the daa to adjust the result to bcd.

For example:

Block manipulation 71

LD A,29H
LD B,24H
ADD A,B
DAA

; LOAD A with 29 hex 41 decimal 29 BCD
; LOAD B with 24 hex 36 decimal 24 BCD
; ADD B register to A register
;decimal adjust

This piece of code would leave the result 53 hex in the a register (not
4D hex as with normal addition).

The way that daa works is that after an arithmetic operation it
checks whether the low nybble is in the range 0 to 9. If this is not the
case, it will add 6 to the low nybble, which causes the high nybble to
be incremented. Then the high nybble is checked. If it exceeds 9
then 6 is added to the high nybble, which will overflow into the

Carry flag.
In the example the Accumulator will hold the value 4Dh before

daa is executed.
Here is the flow of logic for daa in this case:

(a) Low nybble=DH
(b) This is greater than 9 so add 6 to the low nybble to give temp,

result of 13h.
(c) replace the low nybble of temp, result to leave 10H or the high

nybble equal to 1.
(d) Add the high nybble of the temp, result to the high nybble of the
accumulator to give:

4+1=5

(e) 5 is less than 9 so replace high nybble in accumulator.
(f) The Accumulator now contains 53H,this is the correct bcd result of

29+24

7 A Spectrum monitor

This chapter presents a program which will allow you to write, run
and debug machine code programs. It can be entered into vour
Spectrum using the basic machine code loader given as Listing 1
below. After keying in and SAVEing the basic program on tape, begin
the program by entering the start address at which the machine
code program will start to be built up. Then input the hexadecimal
data which makes up the program as given in the hexadecimal listing
(Listing 2). If at any time you wish to correct a mistake there are edit
facilities to help you (see below). Typing $$ when prompted for a
hexadecimal byte allows you to change the address at which the
next piece of data is to be placed. To quit the program, type in a
double hash ## when prompted for hexadecimal data. After this has
been done the program allows you to store the machine code using
the save command. &

For anyone interested in the way in which the monitor was written
the corresponding assembly mnemonic listing has been included in
Appendix 3. At the moment don't worry about understanding how it
works, just type in the data. Once it is up and working you can use it
to enter the other machine code programs which are given. In this
book each functional program, other than illustrative examples, has
two listings. One is in mnemonic form which is easier to read and
follow. This can be used by those of you that have full assembler
programs available. The second listing is the hexadecimal equiva¬
lent. This is the portion of memory of your Spectrum which holds
the program. It is displayed as a hexadecimal dump and can be
reproduced by keying in the appropriate value for each memory
location using the hex monitor. You could, of course, use the basic

monitor to input the machine code listings. However, as you will see
this is not as powerful as its machine code counterpart.

The monitor program has been assembled at the address 25500
This allows us to write machine code programs higher up in mem¬
ory, giving more free space in which to run both basic and machine
programs. The monitor offers the machine code programmer eleven
functions. These are: Dump, Edit, Fill, Goto, Hunt, Identify, Load
Move, Print, Register and Save.

A Spectrum monitor 73

More commands can easily be added by changing a command
table to point to the routine which deals with the new command.

After the monitor has been typed in using the basic loader the
machine code can be SAVEd by typing:

SAVE "SMON" CODE 25500,1500.

The Spectrum is then cleared by switching the machine off and on
again. Next the monitor can be loaded by typing in:

CLEAR24999:LOAD "" CODE: RANDOMIZE USR25500.

The monitor should then welcome you with a '>' prompt, inviting
the input of one of the eleven commands.

D address (Hexadecimal dump)
Type in'd' followed by a two byte hexadecimal number. The moni¬
tor then displays the contents of memory from the given address in
a hexadecimal format. The routine will keep dumping the memory
contents until a key is input other than a carriage return. For

example:

>D 0100

The above command will display 64 bytes of memory from the
address 0100 hex.

Eaddress (Edit)
This allows you to edit or modify a byte in memory. To execute the
command, type in 'e' followed by a two byte address which you wish
to start modifying. The monitor will then show the address which is
being modified and the contents of that address. Then type in a one
byte hexadecimal number to change that location. After the modifi¬
cation has been given the monitor will automatically go onto the
next location to be edited. The routine can be exited by typing in a
non-valid hexadecimal digit, eg:

>E C000
C000 FF 3E
C001 00 2A
C002 00 C9
C003 00 <ENTER>

Pressing <enter> will exit from the edit command.

74 A Spectrum monitor

Fstart address end addres byte (fill memory with byte value)
To fill a block of memory with a given byte, given the start address,
end address and byte value to where the byte is to be filled. For
example:

>F 4000 5800 2A

This will fill the memory from 4000 hex to 5800 hex with the byte 2A
hex.

C address or G address, breakpoint address (goto address)
This command allows execution of a portion of code from a given
address. A second parameter can be given which allows you to give
a break pointwhere the register values will be displayed.

To give a breakpoint type in a after the first address and then
type in the breakpoint address.

>G C000

The above example will cause the monitor to execute from address
C000 and will return back to the monitor after a ret instruction is
met.

>G C000 ,C004

This second example will cause the monitor to execute from the
address C000 with a breakpoint at C004. If the code flows through
this address then it will return to the monitor displaying the Break¬
point address and the contents of the registers. Such an example
could be as follows:

*C004

AF BC DE HL IX
2A3E 22 AA 0000 DEF0 DDFE
0000 0000 2232 2312

H start address end address byte value (hunt fora byte)
The hunt command will allow you to search for a specific byte
through a given set of addresses. Type in 'h' and then give the start
address, the end address and the byte value for which you wish to
search. The routine will then display each address where that byte is
found, pausing for you to type in enter. To exit from this routine
before the search is exhausted, any other key may be pressed.

A Spectrum monitor 75

>H 0000 0100 2A
0008
0018
0031
003A
0068
007A
>

The above example will search for the byte 2A hex. From the address
0000 to 0100 hex. When the search is exhausted the monitor returns
with the prompt.

I string (identify file name)
This command is used in conjunction with the save and load com¬
mand identifying the file name to be LOADed or SAVEd.

Type in Y and then input a filename consisting of no more then
ten letters of the alphabet. Lower case letters will be ignored.

>1 SPECMON

The example above will set the identifier to the string 'specmon'.

L start address,'number of bytes (Load file)
The load command will wait for the filename given by the identifier
(see the Y command) and once found on the tape will start to load it
at the given address. The second parameter (also a two byte
number) specifies the number of bytes to load. The load command
will read in each file of the tape and display its header to the screen.

>1 SPECMON
>L C000 0100
Waiting for SPECMON

The commands above will load the file 'specmon' to the address C000
hex. The number of bytes to be LOADed is 256 (i.e. 0100 hex). To exit
from the load command at any time press both the ccaps shift> and
the <break> keys.

M start address, end address, destination address (move Block)
This command will move blocks of data to a given address. You need
to specify the start address, end address and the destination
address.

>M C000 DB00 4000

76 A Spectrum monitor

The above example will move data from the address C000 up to DB00
hex to the address 4000 hex.

P address (printascii)

The print command is similar to the dump command except that it
displays the contents of the memory in ASCII code form rather than
hexadecimal. For example,

>P 0690

will print the ASCII contents from the address 0690 hex. To continue
the listing press <enter>, otherwise press any other key.

Ror R ror R 'r (register modify)

The register command allows you to examine or modify any register
r, where r can be any of the following:

a modifies the af register pair
B modifies the bc register pair
d modifies the de register pair
h modifies the hl register pair
x modifies the ix register pair

To examine the contents of the registers type in the command 'r'
and the <enter>.

>R ENTER

AF BC DE HL IX
FF3E 0000 0000 F22A 0000
0000 0000 0000 002A

The second value under each register pair is the contents of the
alternative register set. The iy register is not shown as this is used by
the basic system.

To modify a register, you can simply type in the register pair you
wish to modify, after typing in the command 'r'. The monitor will
then display the current value of the register pair, waiting for an
input of the new value. To modify the alternative set, type a ' before
entering the register pair. For example:

>R H 002A 2FFF
>R 'D 0000 2A33

This will change the contents of hl register pair to the value 2FFF
hex, and the alternate de register pair to 2A33 hex.

A Spectrum monitor 77

S start address, number of bytes (save)
The save command is used to save machine code to a tape recorder.
The start address and the number of bytes to save are the parameters
that you will need to specify with this command. The monitor will
then prompt you to get the tape recorder ready and save the portion
of code on tape. The file name is set by using the 'r (identify)
command. For example:

>1 FRED
>S 4000 1B00
Press any key when ready

These will save the 6912 bytes from the address 16384 to the tape.
The file will be SAVEd as 'fred'.

The listings follow below.

Listing 1: basic Hex Monitor

10 CLEAR 25499
20 CLS : GO SUB 160
30 LET a=x
40 GO SUB 320: PRINT x$;":";
50 FOR z = l TO B: GO SUB 90: IF

3$="$$" THEN GO TO 10
60 LET a=a+l: NEXT z
70 PRINT
80 LET x=a: GO TO 40
90 INPUT "hex :"; LINE a*: IF

LEN a$<>2 THEN GO TO 90
100 IF a$=,,$*" THEN RETURN
110 IF a*^"##" THEN STOP
120 GO SUB 250
130 IF e=l THEN GO TO 90
140 POKE a,x: PRINT a$;"
150 RETURN
160 INPUT "addr:"; LINE b$: IF

LEN b$<>4 THEN GO TO 160
170 GO SUB 250
180 IF e=l THEN GO TO 160
190 LET x=t*256+x: LET a=x
200 RETURN
210 REM two byte hex input
220 LET a$=b$(l TO 2)

78 A Spectrum monitor

230 GO SUB 250: LET t=x

240 LET a$=b$(3 TO 4)

250 REM one byte hex input

260 LET e=0

270 LET 1=FN x<2>: IF 1>15 THEN
LET e=1

280 LET h=FN x<l): IF h>15 THEN
LET e=l

290 LET x=h*16+1

300 RETURN

310 DEF FN x(n)=CODE a$(n)-48-(

CODE a$<n>>57 AND CODE at(n)<71)

7-(CODE a$(n)>96 AND CODE a(n)

<103)*39

320 REM two byte input

330 LET h=INT (x/256): LET l=x-

h*256

340 LET x=h: GO SUB 370

350 LET x=l: GO SUB 380

360 RETURN

370 LET x^""

380 LET p=INT (x/16>: GO SUB 39

0:LET p=x—(INT (x/16))*16

390 REM hex

400 IF p >9 THEN LET a$=CHR$ <p+

CODE "A"—10)

410 IF p<=9 THEN LET a$=CHR$ <p

+CODE "0")

420 LET x$=xt+af

430 RETURN

Listing 2: Spectrum Monitor Hexadecimal Listing

639C C3 36 64 3E FF CD C2 04
63A4 C9 37 3E FF CD 56 05 C9
63AC 11 11 00 DD 21 06 69 AF
63B4 37 CD 56 05 3A 11 69 4F
63BC 3E 24 32 11 69 CD CD 68
63C4 11 07 69 CD 2C 64 3E 20
63CC CD r>r> A. iL 64 EB 71 23 23 23
63D4 7E CD 92 66 2B 7E CD 92

A Spectrum monitor 79

63DC 66 2B 3E 20 CD 22 64 7E
63E4 CD 92 66 2B 7E CD 92 66
63EC CD CD 68 C9 11 11 00 DD
63F4 21 06 69 AF CD C2 04 C9
63FC E5 C5 D5 CD A7 64 3A 3B
6404 5C CB 6F 28 F9 CB AF 32
640C 3B 5C D1 Cl El C9 CD FC
6414 63 3A 08 5C CD 22 64 C9

641C 3E 02 CD 01 16 C9 F5 F5
6424 AF 32 8C 5C FI D7 FI C9
642C 1A FE 24 C8 CD *■>*? 64 13
6434 18 F6 31 6E 69 CD 1C 64
643C 11 B0 65 CD 2C 64 11 44
6444 65 CD 2C 64 CD CD 68 31
644C 6E 69 3E 08 32 6A 5C 21
6454 6F 69 36 4B 23 36 64 2B

645C A+- A*, 3D 5C 21 5F 64 E5 CD
6464 CD 68 3E 3E CD 22 64 CD
646C 12 64 D6 41 D8 FE 13 D0
6474 87 21 81 64 5F 16 00 19
647C 5E 23 56 EB E9 83 66 83
6484 66 83 66 1A 66 B3 64 El
648C 66 17 67 8F 68 5E 68 83
6494 66 83 66 FC 64 33 68 83

649C 66 83 66 5A 66 83 66 E2
64A4 67 B5 65 01 00 80 11 00
64AC 40 21 00 40 ED B0 C9 CD
64B4 EE 64 CD 8D 66 3E 20 CD
64BC 22 64 7E CD 92 66 3E 20
64C4 CD 22 64 E5 CD B1 66 El
64CC 77 23 CD CD 68 18 E0 CD

64D4 D6 66 E5 3E 20 CD 22 64

64DC CD D6 66 E5 D1 El C9 CD
64E4 D3 64 E5 D5 CD EE 64 D1
64EC El C9 3E 20 CD 22 64 CD
64F4 D6 66 E5 Cl CD CD 68 C9
64FC 3E 20 CD 22 64 CD D3 64
6504 22 40 65 7B B2 CA AE 66
650C ED 53 42 65 11 7D 65 CD
6514 2C 64 11 17 69 CD 2C 64

80 A Spectrum monitor

651C CD AC 63 11 07 69 21 17
6524 69 06 0A 1A CB AF 4E CB
652C A9 B9 20 EC 23 13 10 F3
6534 ED 5B 42 65 DD 2A 40 65
653C CD A5 63 C9 00 00 00
6544 0D 2A 53 42 55 47 2A 20
654C 28 43 29 20 4A 6F 68 6E
6554 20 57 69 6C 73 6F 6 E 20

655C 31 39 38 34 2E 0D 24 0D
6564 50 72 65 73 73 20 61 6E
656C 79 20 6B 65 79 20 77 68
6574 65 6E 20 72 65 61 64 79
657C 24 0D 57 61 69 74 69 6E
6584 67 20 66 6F 72 20 24 0D
658C 52 4F 55 54 49 4E 45 20
6594 4E 4F 54 20 49 4D 50 4C

659C 45 4D 45 4E 54 45 44 24
65A4 0D 2A 2A 45 52 52 4F 52
65AC 2A 2A 0D 24 16 01 01 0D
65B4 24 3E 20 CD 22 64 CD D3
65BC 64 22 13 69 7B B2 CA AE
65C4 66 ED 53 11 69 11 63 65
65CC CD 2C 64 CD A7 64 CD A7
65D4 64 CD A7 64 CD 12 64 3E

65DC 03 11 06 69 21 17 69 12
65E4 13 01 0A 00 ED B0 CD F0
65EC 63 CD A7 64 CD A7 64 CD
65F4 A7 64 DD 2A 13 69 ED SB
65FC 11 69 CD 9F 63 C9 E5 CD
6604 92 66 3E 20 CD 22 64 El
660C C9 06 08 7E CD 02 66 23
6614 10 F9 CD CD 68 C9 3E 20

661C CD 22 64 CD EE 64 0E 08
6624 CD 8D 66 3E 20 CD 22 64
662C CD 22 64 CD 0D 66 0D 20
6634 EF CD CD 68 CD CD 68 CD
663C 12 64 FE 0D 28 E0 C9 06
6644 15 7E FE 20 38 04 FE 80
664C 38 02 3E 2E CD 22 64 23
6654 10 EF CD CD 68 C9 3E 20

A Spectrum monitor 81

665C CD 22 64
6664 CD 8D 66
666C CD 22 64
6674 EF CD CD
667C 12 64 FE
6684 D5 11 8B
668C C9 7C CD
6694 3F CB 3F

669C A1 66 7B
66A4 3A FA AA
66 AC 64 C9 C3
66B4 CD C8 66
66BC C8 66 CB
66C4 CB 23 B3
66CC 0A D8 A7
66D4 D9 C9 CD

66DC 66 6F FI
66E4 22 64 CD
66EC 22 64 E5
66F4 AE 66 CA
66 FC E5 D1 13
6704 D1 El 77
670C C9 D1 21
6714 64 67 C9

671C CD D6 66
6724 64 CD 12
672C FE 2C C2
6734 E5 11 01
673C B0 El 36
6744 36 67 CD
674C 04 69 31
6754 D5 C5 F5

675C D5 C5 F5
6764 ED 73 04
676C Cl D1 El
6774 Cl D1 El
677C 69 C9 CD
6784 2B CD CD
678C 64 CD 8D
6794 01 03 00

EE 64 0E 08
20 CD 22 64
43 66 0D 20
CD CD 68 CD
28 E0 C9 00
CD 2C 64 D1
66 7D 5F CB
3F CB 3F CD

0F C6 30 FE
C6 07 CD oo aV> XU

64 CD 12 64
CD 12 64 CD
CB 23 CB 23
A7 DE 30 FE
07 FE 10 30
66 F5 CD B1

C9 3E 20 CD
64 3E 20 CD
A7 ED 52 DA
66 E5 Cl El
D5 CD B1 66
B0 CD CD 68
67 E5 D5 CD
20 CD 22 64

3E 20 CD 22
FE 0D 28 El
66 CD D6 66
01 03 00 ED
23 36 7E 23
67 C9 ED 73
69 08 D9 E5
08 DD E5 E5

7B 04 69 C9
31 EF 68 FI
El 08 D9 FI
D9 ED 7B 04
67 El 2B 2B
3E 2A CD 22
EB 21 01 69
B0 CD B4 67

CD
3E
CD
68
0D
65
92
CB

E6
66
4B
5F
23
C9
DE
81

67
D3
EB
AE
E5
ED
4A
3E

E5
64
AE
69
CD
64
01
D9

ED
69
DD
08
4A
68
66
ED

82 A Spectrum monitor

67? C C9 06 04 5E 23 56 E5 EB
67A4 CD 8D 66 3E 20 CD O'?

A*. Am* 64
67AC CD 22 64 El 23 10 EC C9
67 B4 CD CD 68 11 D3 68 CD 2C
67BC 64 21 EF 68 CD 9D 67 CD
67C4 CD 67 CD CD 68 CD 9D 67
67 CC C9 7E F5 23 7E CD 92 66
67D4 FI CD 92 66 23 3E 20 CD

67DC 22 64 CD 22 64 C9 3E 20
67E4 CD O'?

a_ 64 CD 12 64 FE 27
67EC 20 05 CD 12 64 C6 08 21
67F4 2A 68 01 09 00 ED B1 C2
67FC B4 67 2B 11 2A 68 A7 ED
6804 52 11 EF 68 CB 25 1? 23
680C 3E 20 CD 22 64 7E CD 92
6814 66 2B 7E CD 92 66 23 3E

681C 20 CD o'? 64 CD B1 66 77
6824 2B CD B1 66 77 C9 41 42
682C 44 48 58 49 4A 4C 50 3E
6834 20 CD 22 64 CD E3 64 E5
683C A7 ED 52 30 04 El EB 18
6844 F6 EB C5 D5 Cl D1 FI E5
684C A7 ED 52 El 38 03 ED B0
6854 C9 09 2B EB 09 2B EB ED

685C B8 C9 3E 20 CD T1
A- A.. 64 CD

6864 12 64 FE 00 C8 FE 41 DA
686C AE 66 21 17 69 06 0A 0E
6874 20 71 23 10 FC 21 17 6?
687C 06 09 77 05 C8 23 CD 12
6884 64 FE 0D C8 FE 41 DA AE
688C 66 18 EF 3E 20 CD 22 64
6894 CD D3 64 E5 EB A7 ED 52

689C DA AE 66 CA AE 66 E5 Cl
68A4 El 3E 20 CD 22 64 E5 D5
68AC CD B1 66 D1 El BE F5 20
68B4 0D CD CD 68 CD 8D 66 CD
68BC 12 64 FE 0D 20 09 23 0B
68C4 78 B1 28 03 FI 18 E6 FI
68CC C9 3E 0D CD oo

aL. j! 64 C9 41
68D4 46 20 20 20 20 42 43 20

A Spectrum monitor 83

68DC 20 20 20
68E4 20 48 4C
68EC 58 0D 24
68F4 00 00 00
68FC 00 00 00
6904 00 00 00
690C 00 00 00
6914 00 00 00

691C 00 00 00
6924 00 00 00
692C 00 00 00
6934 00 00 00
693C 00 00 00
6944 00 00 00
694C 00 00 00
6954 00 00 00

45 20 20 20
20 20 20 49
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 0D 24 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

44
20
00
00
00
00
00
00

00
00
00
00
00
00
00
00

8 Program production

In this chapter we will go step-by-step through an example machine
code program looking at the different sets of instructions and how
they are assembled into machine code by the assembler. You may
remember that in the first chapter we explained that there are
several ways of writing machine code programs. One method is to
use a professional assembler such as hi-softs 'Devpac. Another is to
use a monitor which allows us to input machine code by its hex¬
adecimal values.

Using an assembler is the best method of writing machine code as
it is written in the mnemonic type instructions which are so easy to
learn. When a program is in the process of being assembled the
assembler goes through each mnemonic converting it to its machine
code equivalent into another part of memory. Most assemblers on
the market provide the option of seeing the mnemonic files trans¬
lated to their hexadecimal equivalents and the addresses where
each particular instruction is to be stored in memory.

Below is an example of an assembled listing:

ORG 16384
4000 3E 21 LD A,33
4002 C9 RET

•END

The first instruction 'org' (ORicin) is not a Z80 instruction but is used
to tell the assembler at what address to place the first instruction in
memory. Our example shows that the origin is set at 16384 decimal
so that the first instruction will be assembled at 16384 or4000 hex.

The assembled listing shows mnemonics to the right of the listing
and the address and hexadecimal Op codes to the left. Why are
hexadecimal values displayed and not decimals? Well why not?
Hexadecimal number are used for convenience sake only. They use
fewer digits to represent the decimal numbers 0-255 and are easier
to read . . . well they should be easier to read after a bit of practice!

The first address is 4000 hex which is 16384 decimal. At this
address the Op code for ld a, (load the a register) is placed. The

Program production 85

content of the address 4001 hex (16385) is the data byte 33, This is
shown by its hexadecimal equivalent 21 hex. Since the first instruc¬
tion was two bytes long the next instruction will be placed at the
address 4002 hex or 16386 decimal. This is the RETurn instruction
which is only one byte long and has the value C9 hex or 201 decimal.

The last instruction 'end' is also not aZ80 instruction. This is used by
most assemblers to signify that there are no more instructions to
assemble. Now armed with this information we can now go through a
short assembled listing looking at each instruction and the effect it
has. Also listed is a hexadecimal dump of the program which can be
used with the basic monitor or machine code monitor listed in this
book. Instruction will be given on how to input the machine code
using the basic monitor. First of all let's go through the overall effect
of the program.

The machine code routine enables you to enhance your programs
by having a scrolling attribute border along the edges of the screen. A
coloured border is produced along the screen by POKEingthe attribute
file with random paper colours. Then the routine begins to move the
whole border in a clockwise direction. The whole program comes in
two parts: a basic listing (listing 1) and the machine code (listing 2).
The basic program does the easy work. It draws a random coloured
border along the Spectrum screen. Line 10 sets the variable x to the
address of the start of the attribute file 22528 and this is used to place a
random line of paper colours along the top of the screen. Lines 20 to 40
produce the top border by POKEing a random paper colour (The paper
colour is produced by multiplying a random number from 0 to 7 by 8).

The lines 50 to 100 produce two coloured borders along the side of
the screen and finally, lines 110 to 140 produce the border for the
bottom of the screen. After the border is produced the machine code
routine is executed by the basic line 150 "randomize usr 30000". The usr
command is used by basic to call a machine code routine in memory.
The address following the usr instruction is the address to where basic
will jump. It executes our machine routine which will shift the whole
border clockwise by one attribute. After the machine code routine
has been executed and returns back to basic (by using a ret instruc¬
tion) the line following the basic call will be executed. Line 160 is used
to slow down the scroll by pausing for 1 second. Line 170 jumps back
to 150 to call the machine code routine again and again until the user
breaks out by pressing <capsshift> and <breakspace> together.

Type in the basic program and save it by typing save "demo". DO
NOT run it at this point, as we have not yet typed in the machine code
routine. RUNning the program will probably result in the Spectrum
crashing and losing the basic program!

86 Program production

With the basic program safely savecI on a cassette, you should now
key-in the assembler listing on page 91. To do this you will, of
course, have to load your assembler first. When this listing has been
entered into the Spectrum you should save the source code, again
onto a cassette, using the appropriate command for your assembler.
Next, clear the memory of the machine by switching it off and then
on again.

Then load up the basic 'demo'. Before re-LOADing the machine
code program type in clear 29000. This will re-set ramtop to protect
our machine code program, load the machine code routine from
the tape into the Spectrum by typing load ''democ'' code and
<enter>. After it has LOADed, run the program and we should get a
coloured border scrolling around the screen in a clockwise direc¬
tion. If the program does not scroll the border then probably you
have mis-typed the machine code routine. Re-type the routine again
using the basic monitor.

Now let's look more closely at the machine code routine and see
how it works:

ORG 30000

The first line tells the assembler where the origin of the machine
code is to be assembled. Since our program is to be placed at the
address 30000, this number is placed after the org instruction.

ATTRADD EQU 5800H

The next instruction is like the org instruction in that it is not a Z80
one. It is used by the assembler to produce a table of strings
(symbols) which hold one or two byte numbers. The string 'equ'

stands for EQuate and produces the string and gives it the value
following the EQuate. In this way the above line will produce the
symbol attradd with the number 5800 hex (22528 decimal).

The symbol attradd now holds the address of the attribute file.

LD HL,ATTRADD+31 ; POINT TO RIGHT HAND SIDE OF ATTR
LD DE,ATTRADD+30 ;DE POINTSTO THE NEXT ATTR

The next two instructions are at the start of the machine code
program. These use the value attradd contained in the assembler's
symbol table. The hl register pair is LOADed with the address of 5800H

Program production 87

plus 31 decimal and the de pair is LOADed with the address 5800H + 30

decimal. The assembler will automatically calculate the two results
and place the address in the source output.

The hl register pair contains the address of the far right hand
corner of the top row of the attribute file. The de register pair holds
the address of the attribute location to the left of the top right hand
corner (it points to the left of the hl register pair).

The object of the first portion of code is to move each of the 31
attributes of the top line of the screen one character along to the
right. This is done by repeatedly replacing the attribute byte pointed
to by the de pair and placing it in the location pointed to by the hl

pair. Then make the two pointers point to the next locations.
The loop dotop, therefore, is used to scroll the top attribute line

from the left to the right:

LD A,(HL) ;SAVE FIRST ATTRIBUTE
PUSH AF ;ON THE STACK

Before going into this loop we have to save the attribute in the top
right hand corner. This will be over-written with the new attribute to
its left.

The first part of the code ld a,(hl) loads the contents of the
address pointed to by the hl pair. This is the top right hand corner of
the attribute file and places the value into the a register. The second
instruction push af pushes this attribute onto the stack, where it will
stay until we need it. This has the effect of saving the first attribute
onto the stack.

LD B,31 ;LOAD B WITH COLUMN COUNTER

We now set up a loop counter needed to scroll the top line of the

attribute file. This is done by LOADing the b register with the value 31

decimal, which is the number of characters we have to scroll across. .

DOTOP: LD A,(DE) ;GET NEXT ATTRIBUTE
LD (HL),A ; AND PLACE IT TO THE ATTRIBUTE

;TO THE LEFT
DEC DE ;POINTTO THE NEXT ATTRIBUTE
DEC HL
DJNZ DOTOP ; REPEAT UNTIL ALL COLUMNS DONE

The content of the de register pair is LOADed into the a register with

88 Program production

the instruction lda, (de). This instruction is used to force the new
byte to be scrolled to the right. This new attribute is placed to the
right by LOADing it to the address pointed to by the hl pair, per¬
formed by the instruction id (hl) ,a (load into the address pointed by
the hl pair the contents of the a register). The attribute, pointers are
then moved to the left by one attribute by subtracting one from each
of the pointers. The DEcrement instructions dec de and dec hl are
used to implement this. The last instruction of this portion of code is
the branch instruction djnz 'DEcrement and Jump if Not Zero'. This
instruction takes the b register from our column counter and sub¬
tracts one from it. If the result is not zero (if the b register does not
contain a zero) then a relative jump is made to the address dotop.

Remember, a relative jump differs from an absolute jump in that an
offset number of bytes is given to where the program must jump
instead of a two byte address. The assembler has the job of cal¬
culating this offset. It does this by working out the number of bytes
between the lable dotop and the instruction djnz dotop.

After leaving this loop the program has to deal with the coloured
borders along the lefthand side of the attribute file. Since the hl pair
has been decremented 31 times in the loop it will now point to the
start of the attribute file 5800 hex. The de pair will point to the
address 57FFh:

LD BC,32 ; LET HL POINT ONE ROW DOWN
ADD HL,BC ; BY ADDING 32
INC DE ;DE NOW POINTS TO START

;OF ATTRIBUTE FILE IE. 5800H

The hl pair is adjusted to point to the second attribute row by the
adding of 32. This is done by the two instructions ld bc, 32 (load the
bc pair with 32) and add hl, bc (add to the hl pair the contents of the
bc pair). The de is adjusted to point to the start of the Attribute file.
Since its value is 57FFH then it is a simple matter of adding one to get
the desired result. Therefore we use the instruction which incre¬
ments the de pair by one: 'inc de'.

Now we come to the portion of code which deals with scrolling
the attributes from the bottom left hand side to the top left hand
side:

LD B,21

The b register is set with the row counter and the loop doleft is then
entered. This time the hl register pair points to the new attribute
and the de pair points one row up to the old attribute. Like the first

Program production 89

portion of code which dealt with the scrolling, the top row of the
contents of the new attribute address is placed into the old attribute
address. The pointers are then updated to point to the next
attributes. Since we are going down the attribute file we must add an
offset of 32 to both the de and hl register pairs. The bc register pair is
placed onto the stack, which saves the row counter from being
corrupted. The bc pair is then LOADed with 32 which is the offset
needed to point to the next row down. This is added to the hl pair so
that it now points to the next row down. It is then exchanged with the
de pair so that it too can be updated. The instruction ex de,hl (Exchange
the de pair with the hl pair) is used because there is no such
instruction as add de,bc. Therefore we swap the two pairs and update
the other pointer with a second add hl,bc instruction. To restore the
registers to their new values we have to use the Exchange instruction
once more. The row counter is then restored by the instruction popbc

(pop the top of the stack to the bc pair) which is decremented and
tested to see if we have moved 21 bytes in the djnz instruction.

DOLEFT:LD A,(HL)
LD (DE),A
PUSH BC
LD BC,32
ADD HL,BC
EX DE,HL
ADD HL,BC

EX DE,HL
POP BC
DJNZ DOLEFT

;GET ATTRIBUTE BELOW
;AND PLACE ON OLD ONE.
;SAVE ROW COUNTER
; NEXT ROW OFFSET
;HL NOW POINTS TO NEW ROW
; SWOP FOR DE
;WHAT WAS DE NOW POINTS TO NEW
;ROW
; RESTORE BACK TO NORMAL
; RESTORE ROW COUNTER
; REPEAT UNTIL ALL ROWS DONE

After executing the above loop the de pair points to the bottom
lefthand side of the attribute file. We now need to scroll the bottom
line from the right to the left. Therefore, we need the hl pair pointing
to the attribute to the right of the de pair.

LD H,D ;PLACE DE INTO HL
LD L,E

The de pair is first copied into the hl pair by the two instructions

LOADing the high part of the de pair (the D register) into the high part of

the hl pair (the h register). This is performed with the instruction ld

h,d (load into the h register the contents of the d register). Then the

low part is copied by using the instruction ld l,e (load the l register

with the contents of the e register).

90 Program production

Now that the hl pair is also pointing to the bottom left hand

corner, point it to the right of the de pair by incrementing it by one

using instruction inchl (iNcrement the hl pair by one).

INC HL ;HL POINTS ONE TO RIGHT OF DE

The next portion of code is very similar to the dotop but this time we
are scrolling the attributes in the opposite direction. Notice that we
are incrementing the pointers instead of decrementing them.

LD B,31 ; LOAD B REG WITH COLUMN COUNTER
DOBOT:LD A,(HL) ;GET DATA FROM THE ATTR ON RIGHT

LD (DE),A ;AND PLACE IT IN THE LEFT
INC HL ;POINTTO NEW ATTRIBUTES
INC DE ;TO THE RIGHT
DJNZ DOBOT ;REPEAT UNTIL DONE 31 TIMES

After scrolling the bottom portion of the attributes we now deal with
the scrolling of the right hand side of the attributes.

First, we adjust the hl register pair to point to one row above the
de pointer. The instruction ld bc,-32 is the one used. The final
portion of code is similar to the loop doleft but this time we are only
scrolling 20 rows as the second row from the top has its new
attribute SAVEd on the stack.

DEC HL ; RE-ADJUST HL BACK ONE
LD BC,—32 ;AND MAKE IT POINT TO ONE
ADD HL,BC ; ROW ABOVE DE
LD B,20 ;THIS TIME ONLY DO 20 TIMES

;AS LAST ATTRIBUTE IS HELD ON
;THE STACK

DORIG: LD A,(HL) ;GETTHE ATTRIBUTE ABOVE
LD (DE),A ; AND PLACE IT TO THE ATTRIBUTE

; BELOW
PUSH BC ;SAVE ROW COUNTER
LD BC,—32 ;LOAD BC WITH OFFSET
ADD HL,BC ;MAKE HL POINT TO ONE ROW ABOVE
EX DE,HL ;SAVE TEMP IN THE DE PAIR
ADD HL,BC ;MAKE OLD DE POINT ONE ROW ABOVE
EX DE,HL ;AND RESTORE BACK DE AND HL
POP BC ; AS WELL AS THE ROW COUNTER
DJNZ DORIG ; REPEAT UNTIL ALL ROWS DONE

Finally, we 'pop' off the first attribute that we saved and place it to

Program production 91

the fast attribute on the second row of the screen. The RETurn
instruction then returns control back to the basic program.

POP AF ;CET ATTRIBUTE VALUE ON STACK
LD (DE),A ;AND PLACE IN NEW POSITION
RET ;AND RETURN

END

ORG 30000

ATTRADD E8U 5800H

LD HL,ATTRADD+31 POINT TO RIGHT HAND

SIDE OF ATTR

LD DE, ATTRADD+30 DE POINTS TO THE NEXT ATTR

LD A, < HL > SAME FIRST ATTRIBUTE

PUSH AF ON THE STACK

LD B, 31 LOAD B WITH COLUMN COUNTER

DOTOP: LD A, (DE) GET NEXT ATTRIBUTE

LD f HL >, A AND PLACE IT TO THE

ATTRIBUTE TO THE LEFT

DEC DE POINT TO THE NEXT

ATTRIBUTES

DEC HL

DJNZ DOTOP ;REPEAT UNTIL DONE

jALL COLUMNS

j HL NOW POINTS TO 5800H IE TOP

; LEFT HAND CORNER OF ATTRIBUTES

LD BC, 32 LET HL POINT ONE ROW DOWN

ADD HL, BC BY ADDING 32

INC DE DE NOW POINTS TO START

OF ATTRIBUTE FILE IE 5800H

B, 21 LD

92 Program production

DOLEFT:

DOBOT:

LD A, (HL) GET ATTRIBUTE BELOW
LD (DE), A AND PLACE ON OLD ONE.
PUSH BC SAVE ROW COUNTER
LD BC, 32 NEXT ROW OFFSET
ADD HL, BC HL NOW POINTS TO NEW ROW
EX DE, HL SWAP FOR DE
ADD HL, BC WHAT WAS DE NOW POINTS

TO NEW ROW
EX DE, HL RESTORE BACK TO NORMAL
POP BC RESTORE ROW COUNTER
DJNZ DOLEFT REPEAT UNTIL DONE ALL ROWS

LD H, D ;PLACE DE INTO HL
LD L, E
INC HL j HL POINTS ONE TO

;RIGHT OF DE

LD B, 31 ;LOAD B REG WITH COLUMN

;COUNTER

LD A, (HL) ;GET DATA FROM THE ATTR
;ON RIGHT

LD (DE), A AND PLACE IT IN THE LEFT
INC HL ;POINT TO NEW ATTRIBUTES
INC DE ;TO THE RIGHT
DJNZ DOBOT ;REPEAT UNTIL DONE 31 TIME!

DEC HL ;RE-ADJUST HL BACK ONE
LD BC, -32)AND MAKE IT POINT TO ONE
ADD HL, BC ;ROW ABOVE DE

LD B, 20 iTHIS TIME ONLY DO 20 TIMES
;AS LAST ATTRIBUTE
;IS HELD ON THE STACK

Program production 93

DORIG; LD A, < HL) GET THE ATTRIBUTE ABOVE
LD (DE), A AND PLACE IT TO THE

ATTRIBUTE BELOW
PUSH ec SAVE ROW COUNTER
LD BC, -32 LOAD BC WITH OFFSET
ADD HL, BC MAKE HL POINT TO ONE

ROW ABOVE
EX DE, HL SAVE TEMP IN THE DE PAIR
ADD HL, BC MAKE OLD DE POINT ONE

ROW ABOVE
EX DE, HL AND RESTORE BACK DE AND HL
POP BC AS WELL AS THE ROW COUNTER
DJNZ DORIG REPEAT UNTIL DONE ALL ROWS

POP AF ;GET ATTRIBUTE VALUE

i ;ON STACK
LD (DE >, A j ;AND PLACE IN NEW POSTION
RET i ;AND RETURN

5 CLEAR . 29998;BORDER 0:CL5
10 LET X= 22528
20 FOR F= X TO X+31
30 POKE F ,B*RND*7
40 NEXT F
50 FOR 5= 1 TO 21
60 LET A= X+32*S
70 POKE A ,8*RND*7
80 LET A= A+31
90 POKE A ,8*RND*7

100 NEXT S
110 FOR X= 23201 TO 23201+30
130 POKE X ,8*RND*7
140 NEXT X
150 RANDOMIZE USR 30000
160 PAUSE 10
170 GO TO 150

9 Using the rom
routines

The rom (Read Only Memory) is a permanent program built into the
Spectrum. It handles the interpretation and execution of basic and
controls the operating system. It is contained in the first 16k of the
Spectrum's memory map and enables you to run and edit basic pro¬
grams. The ROM manages sound, graphics and communication
between the cassette port and the keyboard.

It is worthwhile looking at some of the routines contained in the
rom as these can be used by the programmer when memory space is
scarce. They can also be utilised if a complex arithmetic routine is
needed or a particular function of the Spectrum is to be used. Each
rom routine is found at a particular memory location and we need to
know the correct sequence of operations and the values that must
be placed in selected registers.

PRINT and CHANNEL routines

The following routine allows the user to print characters to what are
known as streams via channels. A channel is the route by which
input and output are effected to the various devices on a computer.
Examples of such devices on the Spectrum are the keyboard, the
printer and the screen. There are seven channels on the Spectrum,
the most useful of which are given below:

Channel 0 or Channel K (used for input and output to bottom part
of screen)

Channel 1 or Channel K (as Channel 0)
Channel 2 or Channel S (used for printing to the screen)
Channel 3 or Channel P (used for printing to the printer)

Before we print to a channel we must indicate to the Spectrum
which stream we wish to use. This is known as 'Opening a Channel'.
When we use the rom routines to print a character the output will go
to the currently selected channel until we open another channel. To
open a channel we load the a register with the channel number we
wish to use. We then call the rom routine at address 1601 hex which

Using the rom routines 95

will 'open' that channel. Any PRiNTing done by means of the rom

routines would now send the output to the channel selected.
Therefore, if we wanted to start PRiNTing to the screen we would

open channel 2:

LD A,2 ;select screen
CALL 1601H ;open channel

Now to start PRiNTing a character to the currently selected channel
we can use a routine at the address 10 hex. The a register is LOADed
with the ASCII value of the character we wish to print. We use the
call instruction:

RST 10H ;print the character in A reg
;to the current channel

The RST 10 subroutine is extremely useful when PRiNTing to the
screen because it automatically updates the system variables by
updating the print co-ordinate of the next character position. It can
also handle all the control characters, thus enabling us to simulate
the print at ,tab,ink,paper,over,inverse,bright and flash basic com¬
mands. Given below is a table of the control characters and their
code values:

Character ASCII value (decimal)
INK 16
PAPER 17
FLASH 18
BRIGHT 19
INVERSE 20
OVER 21
AT 22
TAB 23

Therefore if we wished to print the character 'a' on the :
position 10 and X position 10, in blue ink yellow paper we
the code:

LD A,2 ;first open channel 2
CALL 1601H
LD A,22 ; PRINT AT

RST 10H
LD A,10 ; PRINT AT10

RST 10

at y
use

96 Using the rom routines

LD A,10
RST 10H ;PRINT AT 10,10;
LD A,16 ;INK
RST 10H
LD A/1 ; LOAD A WITH CODE FOR BLUE
RST 10H ;BLUEINK
LD A,17 ; PAPER
RST 10H
LD A,6 ; YELLOW PAPER
LD A/A'
RST 10 ; PRINT CHARACTER

PRINT STRING - 203C hex

This routine can be used to print a string of characters. The de regis¬
ter pair is set up to contain the address of the start of the string that
we wish to print, the bc register contains the number of characters
in the string. As an example we have taken the last routine but this
time all the characters have been put into a string:

LD
CALL
LD
LD
CALL
RET

string: DB

A,2

1601H ;open channel 2
DE,string ;point to string

BC,8 ; number of chars in string.
203CH ;print string.

;and return
22,10,10,16,1,17,6/A'

Printing numbers

PRINT LINE NUMBER-LA1BH

This is a simple routine which is used by the rom to print line
numbers in basic therefore it is limited to PRiNTing numbers from 0 to
9999. The bc register pair is set up with the number we wish to print;

LD BC,400H

CALL 1A1BH ;print 1024 decimal
RET

PRINT LINE NUMBER2 - 1A28H

This routine is identical to the one above except that the number is
pointed to by the rnpair.

Using the rom routines 97

LD HL,6000H address contents
CALL 1A28H 6000h 03H
RET 6001 h CAH

This section of code would result in the number 970 decimal being
PRiNTed to the current channel. You may notice that the two bytes
that make up the number are stored in memory in the reverse
manner to that usually used by the Z80 (i.e. MSB, lsb). This is due to
the fine numbers being held the 'wrong way' round in memory.

SCREEN ADDRESSING

Screen addressing routines in the rom are used for PRiNTing and
PLOTting. When we plot a point using the Spectrum basic the screen
is split into a grid of 176 lines by 256 points with the co-ordinate 0,0
starting at the bottom left hand side. There are 16 remaining lines at
the bottom of the screen which are used by the basic operating
system for input, error messages, etc.

These routines may be used if required. However if you wish to
plot or print to any part of the screen, including the 16 'unusable'
lines, I suggest you use my plot routine described in chapter 10 on
the display file.

CHARADD- 0E9BH
This routine can be used to find the address on the screen for a
given character line number 1-24. The first line starts at the bottom
of the screen. The b register is LOADed with the line number of which
we want to find the address. After calling the routine the hl register
pair is RETURNed with the address of the first character line.

LD B,1
CALL 0E9BH ;find address of line 1

PIXADD - 22AAH
This routine is used to find the address of a point on the screen. The
b register is set with Y co-ordinate and the c register with the x
Co-ordinate, the address of which we wish to find. On RETURNing
from the subroutine the hl register pair contains the screen address
and the a register the bit position of the screen which is 0-7. Note
that this is inverted and refers to the bit sequence left to right, not
right to left. Therefore if a returns 0 then the leftmost bit, bit seven is
referred to and if A gives 2 then bit five (the third from the left) is
referred to, etc.

98 Using the rom routines

Beeper routine - 03B5

The BEEPer routine is called by LOADing the de register with the
duration, which is the frequency of the note multiplied by the
number of seconds we wish the note to last. The pitch is tOADed into
the hl register pair and we call the BEEPer routine at address 03B5 hex.
The notes and their corresponding pitch values are given in the
table below. For example, if we wanted to play middle G sharp for
half a second (i.e. G#4) we would load the de register pair with
0.5¥415=cf hex (415=19f hex), load the hl pair with 3ff, and then call
the routine:

;play middle G sharp
;for half a second
LD DE,0CFH
LD HL,19FH
CALL 03B5H

Table of duration and pitch values for musical notes

Note Freq Dur Pitch
(Hz) (sec)

(hex) (hex)

C 0 16.35 10 6868
C#0 17.32 11 628D
D 0 18.35 12 5D03
D#0 19.44 13 57CB
E 0 20.60 14 52D7
F 0 21.83 15 4E2B
F#0 23.12 17 49CC
G 0 24.50 18 45A3
G#0 25.96 19 41B6
A 0 27.50 IB 3E06
A#0 29.14 ID 3A87
B 0 30.87 IE 373E
C 1 32.70 20 3425
C#1 34.64 22 3137
D 1 36.70 24 2E72
D#1 38.88 26 2BD6
E 1 41.20 29 295C
F 1 43.66 2B 2706
F#1 46.24 2E 24D7
G 1 49.00 31 22C2
G#1 51.92 33 20CC

Note Freq Dur Pitch
(Hz) (sec)

(hex) (hex)

A 1 55.00 37 1EF4
A#1 58.28 3A 1D34
B 1 61.74 3D 1B90
C 2 65.40 41 1A03
C#2 69.20 45 188C
D 2 73.40 49 172 A
D#2 77.76 4D 15DC
E 2 82.40 52 149F
F 2 87.32 57 1374
F#2 92.48 5C 125C
G 2 98.00 62 1152
G#2 103.84 67 1057
A 2 110.00 6E F6B
A#2 116.56 74 E8B
B 2 123.48 7B DB8
C 3 130.80 82 CF2
C#3 138.56 8A C37
D 3 146.80 92 B86
D#3 155.52 9B ADF
E 3 164.80 A4 A40
F 3 174.64 AE 9AB

Using the ROM routines 99

Note Freq Dur Pitch Note Freq Dur Pitch

(Hz) (sec) (Hz) (sec)

(hex) (hex) (hex) (hex)

F#3 184.96 B8 91F A 5 880.00 370 1D3

G 3 196.00 C4 89A A#5 932.48 3A4 1B7

G#3 207.68 CF 81C B 5 987.84 3DB 19C

A 3 220.00 DC 7A6 C 6 1046.40 416 183

A#3 233.12 E9 736 C#6 1108.48 454 16C

B 3 246.96 F6 6CD D 6 1174.40 496 156

C 4 261.60 105 66A D#6 1244.16 4DC 141

C#4 277.12 115 60C E 6 1318.40 526 12D

D 4 293.60 125 5B3 F 6 1397.12 575 11B

D#4 311.04 137 560 F#6 1479.68 5C7 109

E 4 329.60 149 511 G 6 1568.00 620 F8

F 4 349.28 15D 4C6 G#6 1661.44 67D E9

F#4 369.92 171 480 A 6 1760.00 6E0 DA

C 4 392.00 188 43 D A#6 1864.96 748 CC

G#4 415.36 19F 3FF B 6 1975.68 7B7 BF

A 4 440.00 1B8 3C4 C 7 2092.80 82C B2

A#4 466.24 1D2 38C C #7 2216.96 8A8 A7

B 4 493.92 1ED 357 D 7 2348.80 92C 9C

C 5 523.20 20 B 326 D#7 2488.32 9B8 91

C#5 554.24 22A 2F7 E 7 2636.80 A4C 87

D 5 587.20 24B 2CA F 7 2794.24 AEA 7E

D#5 622.08 26E 2A1 F#7 2959.36 B8F 75

E 5 659.20 293 279 G 7 3136.00 C40 6D

F 5 698.56 2 BA 254 G#7 3322.88 CFA 65

F#5 739.84 2E3 231 A 7 3520.00 DC0 5E

G 5 784.00 310 20 F A #7 3729.92 E91 57

G#5 830.72 33 E 1F0 B 7 3951.36 F6F 50

As a demonstration the program below plays a well known tune
which true Spectrum owners should recognise. The program reads a
series of pitch and duration values which are passed to the BEEPer. To
finish the tune we use the byte 0FF hex. If you are really into music a
more sophisticated version of play is given in Chapter 12.

100 Using the rom routines

Assembler Listing

ORG 320000
BEEPER ESU 03B5H

PLAY:
LD IX,FRERE

GETV: LD L,(IX+0)

LD H, (IX+1)

INC H

RET Z
DEC H
LD E,(IX+2)

LD D,(IX+3)

PUSH IX

CALL BEEPER

POP IX
LD DE, 4
ADD IX, DE

JR GETV

POINT TO START OF MUSIC
LOAD L WITH LOW PART
OF THE PITCH
LOAD H WITH HIGH PART
OF THE PITCH
IF H IS 0FF HEX THEN
END OF MUSIC
SO RETURN
RESTORE HIGH PART OF PITCH
LOAD E WITH LOW PART
OF DURATION
LOAD D WITH HIGH PART
OF DURATION
SAVE MUSIC POINTER ON
THE STACK
CALL BEEPER ROUTINE IN
THE ROM
RESTORE IX
LOAD DE WITH A
AND POINT TO NEXT
PIECE OF MUSIC
GET NEXT PIECE OF MUSIC

DEFW 66AH
DEFW 105H
DEFW 5B3H
DEFW 125H
DEFW 560H
DEFW 9BH
DEFW 5B3H
DEFW 92H
DEFW 66AH
DEFW 105H

FRERE:

Using the ROM routines 101

DEFW 66AH

DEFW 105H

DEFW 5B3H

DEFW 125H

DEFW 560H

DEFW 9BH

DEFW 5B3H

DEFW 92H

DEFW 66AH

DEFW 105H

DEFW 560H

DEFW 137H

DEFW 4C6H

DEFW 15DH

DEFW 43DH

DEFW 188H

DEFW 560H

DEFW 137H

DEFW 4C6H

DEFW 15DH

DEFW 43DH

DEFW 188H

DEFW 43DH

DEFW 126H

DEFW 3FFH

DEFW 67H

DEFW 43DH

DEFW 0C4H

DEFW 4C6H

DEFW 0AEH

DEFW 560H

DEFW 9BH

DEFW 5B3H

DEFW 92H

DEFW 6&AH

DEFW 105H

102 Using the rom routines

DEFW 43DH

DEFW 126H

DEFW 3FFH

DEFW 67H

DEFW 43DH

DEFW 0C4H

DEFW 4C6H

DEFW 0AEH

DEFW 560H

DEFW 9BH

DEFW 5B3H

DEFW 92H

DEFW 66AH

DEFW 105H

DEFW 66AH

DEFW 105H

DEFW 89AH

DEFW 0C4H

DEFW 66AH

DEFW 20AH

DEFW 66AH

DEFW 105H

DEFW 89AH

DEFW 0C4H

DEFW 66AH

DEFW 20AH
DEFW

END
0FFFFH

Hexadecimal Listing

7D00 DD 21 21
7D08 66 01 24
7D10 DD 56 03
7D18 DD El 11
7D20 E3 6A 06
7D28 01 60 05
7D30 00 6A 06
7D38 01 B3 05

7D DD 6E 00 DD
C8 25 DD 5E 02
DD E5 CD B5 03
04 00 DD 19 18
05 01 B3 05 25
9B 00 B3 05 92
05 01 6A 06 05
25 01 60 05 9B

Using the rom routines 103

7D40 00 B3 05 92 00 6A 06 05

7D4 8 01 60 05 37 01 C6 04 5D

7D50 01 3D 04 88 01 60 05 37

7D58 01 C6 04 5D 01 3D 04 88
7D60 01 3D 04 26 01 FF 03 67

7D68 00 3D 04 C4 00 C6 04 AE
7D70 00 60 05 9B 00 B3 05 92

7D78 00 6A 06 05 01 3D 04 26

7D80 01 FF 03 67 00 3D 04 C4

7D88 00 C6 04 AE 00 60 05 9B
7D90 00 B3 05 92 00 6A 06 05
7D9 8 01 6A 06 05 01 9A 08 C4
7DA0 00 6 A 06 0A 02 6A 06 05
7DA8 01 9A 08 C4 00 6A 06 0A
7DB0 02 FF FF 05 01 6A 06 05
7DB8 01 B3 05 25 01 60 05 9B

7DC0 00 B3 05 92 00 6A 06 05
7DC8 01 60 05 37 01 C6 04 5D
7DD0 01 3D 04 88 01 60 05 37
7DD8 01 C6 04 5D 01 3D 04 88
7DE0 01 3D 04 26 01 FF 03 67
7DE8 00 3D 04 C4 00 C6 04 AE
7DF0 00 60 05 9B 00 B3 05 92
7DF8 00 6A 06 05 01 3D 04 26

TAPE LOADING AND SAVING

The following routines can be used in programs to enable the user
to save and load data to cassette. When you save or load data in basic

it comes in two parts. The first part is a 'header' containing informa¬
tion about the file, its name, the length of the file, and its start
address. The two main routines are savedata, at address 04C2 hex,
and loaddata at 0556 hex. These routines are called with the ix regis¬
ter pair containing the address where the data is placed or SAVEd

from and the de register containing the number of bytes we wish to
save or load. We load the a register with 0 if we are dealing with the
header section or 0FF hex if we are dealing with a data block. When
LOADing a file the Carry flag is set when actually LOADing data but it is
reset if we want to verify data.

Below is a set of routines which the programmer can use with the
cassette.

104 Using the ROM routines

SAVEBYTES:
LD DE,NBYTES
LD IX, START
LD A,0FFH
CALL SAVEDATA
RET

SAVEHEADER:
LD DE,17
LD IX,START-OF
XOR A
CALL SAVEDATA
RET

LOADBYTES:
LD DE,NBYTES
LD IX, START
LD A,0FFH
SCF
CALL LOADDATA
RET

LOADHEADER:
LD DE,17
LD IX,START-of-l
XOR A
SCF
CALL LOADDATA
RET

VERIFYBYTES:
LD DE,NBYTES
LD IX,START
LD A,0FFH
AND A
CALL LOADDATA
RET

VERIFYHEADER:
LD DE,17
LD IX,START-of-F
XOR A
CALL LOADDATA
RET

; number of bytes to save
; start of block
;savingadata block
;save bytes

;save 17 bytes length of header
;point to start of header info
;signify header.A=0
;save header

;signify loading

; reset carry flag

; reset carry flag and
;set A=0

Using the rom routines 105

The following program uses these routines to make backup copies
of most tapes. Please do not infringe copyright by using this to copy

protected tapes!

Assembler Listing

ORG 32000

JP START

MEM EQU
PRXSTRING

23900
ESU 203CH

MESSl! DEFM 22,1,0,'FILENAME: '

SIZ1 ESU 13
MESS2: DEFM 22,3,0,'PROGRAM TYPE: '

SIZ2 ESU 17
MESS3: DEFM 22, 6,0,'LENGTH: '

SIZ3 ESU 11
MESS4: DEFM 22, 9,0,'START: '
SIZ4 ESU 10
;MESS5: DEFM 22, 12, 0,'BASIC LENGTH:'
JSIZ5 ESU 16
WAITP: DEFM 22,10,0,' MAC WAITING FOR HEADER

DEFM 22, 13, 0,' COPYRIGHT J. K WILSON 1983

SIZWP ESU 62

TBASIC: DEFM 'BASIC'

TNUM: DEFM 'NUMER'
TCHAR: DEFM 'CHARA'
TCODE: DEFM 'BYTES'

SAVES: DEFM 22,21, 0, ' Do you want a copy?'

SIZQ ESU 22
SAVER: DEFM 22,21,0,'Press ENTER when ready.'

SIZR ESU 26
BLANKM: DEFM 22,21,0,'
SIZB ESU 26

106 Using the rom routines

ERRXSP EGU 23613

LOADBTS EQU 0556H
SAVEBTS EQU 04C2H

NUMTAi
DEFU 10000
DEFW 1000
DEFU 100
DEFU 10
DEFU 1

NUMB! DS 5

OUTXNUM:
LD IX,NUMTA
LD DE,NUMB

DIGIT! LD C, (IX+0)
LD B.<IX+1)
LD A.'B'-l
AND A

FIN:

INC A
SBC HL. BC
JR NC, FIN
ADD HL, BC
LD (DE), A

DEC C
INC DE
JR Z, OUTP

INC IX

INC IX
JR DIGIT

OUTP; LD DE, NUMB
LD BC, 5
CALL PRXSTRING
RET

;SYSTEM VARIABLE

1 ERROR STACK POINTER

;LOAD BYTES ROM ROUTINE
I SAVE BYTES ROM ROUTINE

j BASE TEN TABLE

;NUMBER BUFFER

1 POINT TO TABLE

JDE POINTS TO BUFFER
J GET LOU BYTE OF BASE 10
{GET HIGH BYTE OF BASE 10
}A REGISTER =30 HEX
;CLEAR CARRY

JCALCULATE NUMBER OF
;MULTIPLES OF TENS UNTIL
I CARRY FLAG IS SET
jRESTORE NUMBER
;PLACE ASCII NUMBER
;IN BUFFER
iTEST TO SEE IF FINISED
;BUMP BUFFER POINTER

;FINISHED OUTPUT NUMBER
;TO CURRENT CHANNEL
;POINT TO NEXT

;MULTIPLE OF 10

iFIND NEXT ASCII DIGIT
;NUMBER BUFFER
;LENGTH OF STRING
;PRINT IT!

;AND RETURN

Using the rom routines 107

HEAD GETS HEAD INFORMATION FROM TAPE
17 BYTES OF INFORMATION ARE PASSED TO STARTING ADDRESS IX

NB. DE MUST BE LOADED WITH 17

0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16

TI m**FILENAME****m I *LEN* I *STR* I *PRG* I

T=TYPE 0 iBASIC PROGRAM
1 !NUMERICAL ARRAY
2 !CHARACTER ARRAY
3 !BLOCK OF CODE

FILENAME :N0 MORE THAN TEN BYTES

LEN=LENGTH OF CODE IF TYPE 3

STR=START ADDRESS OF CODE OR LINE NUMBER

;PRG=LENGTH OF PROGRAM AREA

HEADER: DS 17

TYP ESU
FILE EBU
LEN EBU
STR EBU

HEADER+0
HEADER+1
HEADER+11

HEADER+13

TYPE OF PROGRAM
FILENAME
LENGTH OF CODE

STARTING ADDRESS

HEADIN: SCF
LD
LD
LD
CALL
RET

j

A, 0

IX,HEADER
DE, 17
LOADBTS

;SET CARRY FLAG

IX POINTS TO HEADER BUFFER
17 BYTES OF INFORMATION
LOAD BYTES

HEADOUT:
LD
LD

LD
CALL
RET

A, 0
IX,HEADER
DE, 17
SAVEBTS

j SET A TO ZERO
iPOINT TO HEADER

;17 BYTES TO
{SAVE

108 Using the rom routines

SAVECODEs
LD A,0FFH
LD IX, MEM
LD DE, (LEN)
CALL SAVEBTS
RET

LOADCODE:

SCF

LD A, 0FFH

LD IX, MEM
LD DE, (LEN)
CALL
RET

LOADBTS

CLS:
LD HL,4000H
LD DE,4001H
LD BC, 8*32*24-1
LD
LDIR

(HL), 0

LD DE,HOME
LD BC, 3
CALL
RET

PRXSTRING

40ME: DB 22, 0, 0

DISPLAY:

CALL CLS
LD DE,MESS1
LD BC,SIZ1

CALL PRXSTRING
LD DE, FILE
LD BC, 10
CALL PRXSTRING

iPOINT TO RAM

»' GET LENGTH FROM HEADER
;AND SAVE

;SET CARRY FLAG
J TO SIGNIFY LOADING
iA REG LOADED WITH
J TYPE OF DATA

I POINT TO START OF CODE
I PUT LENGTH OF CODE INTO DE
;DO LOADING

;CLEAR SCREEN

;AND PLACE CURSOR

j AT HOME

;CLEAR SCREEN
;PRINT FILENAME STRING

;PRINT

;FILENAME

Using the rom routines 109

LD DE,MESS2

LD BC,SIZ2

CALL PRXSTRING

LD HL,TBASIC

LD A, (TYP)

LD E, A
SLA A
SLA A
ADD A, E
LD E, A

LD D, 6

ADD HL, DE
j HL POINTS TO STRING

EX DE, HL

LD BC, 5

CALL PRXSTRING

LD DE, MESS3

LD BC, SIZ3
CALL PRXSTRING

LD HL, (LEN)
CALL OUTXNUM

LD DE, MESS4
LD BC,SIZ4
CALL PRXSTRING
LD HL, (STR)
CALL OUTXNUM

RET

START:
LD SP, STACK

LD A, 2
CALL 1601H

;PRINT TYPE STRING

iSAVE TYP IN E REG
;2*TY
;4*TYP
;4*TYP+TYP=5*TYF

;PUT OFFSET IN DE

;NUMBER OF BYTES TO PRINT

; TYPE

jPRINT LENGTH STRING

;NUMBER OF BYTES

;STARTING LINE/ADDRESS

;OPEN CHANNEL 'S'

110 Using the ROM routines

ERRORS:

LD SP,STACK

LD HL, ERRSP ;ERROR STACK
LD < HL), L0W(ERRORS)
INC HL

LD (HL),HIGH(ERRORS)
DEC HL

LD < 23613),HL

NEXT:

CALL WAITM

CALL HEADIN
CALL DISPLAY
CALL LOADCODE
CALL WANT
JR NZ,NEXT

ACOPY: CALL SAVEMESS

CALL HEADOUT
CALL PAUSE
CALL PAUSE
CALL SAVECODE
CALL WANT

JR Z, ACOPY
JR NEXT

WAITM:
CALL CLS
LD DE, WAITP
LD BC,SIZWP
CALL
RET

PRXSTRING

j WAIT FOR HEADER MESSAGE

{GET HEADER
{DISPLAY INFORMATION
{LOAD CODE

{DOES HE WANT TO SAVE THIS?

}ASK HIM IF HE IS READY
{TO SAVE ETC ETC.
{OUTPUT HEADER
{WAIT

{SAVE CODE
{DOES HE WANT TO MAKE
{ANOTHER COPY?

J YES. WELL MAKE ANOTHER ONE

{CLEAR SCREEN
{TELL THEM
{WE ARE WAITING

WANT:

LD DE, SAVES {PROMPT FOR ANSWER
LD BC, SIZ8
CALL PRXSTRING

Using the rom routines 111

WAITK; CALL KEY
CP ‘ V

JR Z, RSZ

CP 'y'
JR Z, RSZ

CP 'N'
JR Z, RSZ-1

CP ' n'

JR NZ, WAITK

AND A

RSZ: PUSH AF

BLK: LD DE,BLANKM

LD BC, SIZB

CALL PRXSTRING

POP AF

RET
PAUSE:

CALL PAUSE2

PAUSE2: LD HL, 0
LD DE, 0

LD BC,0FFFFH

LDIR
RET

SAVEMESS:
LD BC, SIZR

LD DE,SAVER
CALL PRXSTRING

ENT: CALL KEY
CP SDH

JR NZ,ENT

CALL RSZ
RET

FLAGS EQU 23611
LASTXK ESU 2356B

)GET KEYBOARD STATUS

;IF YES RETURN WITH A

; ZERO

;NON ZERO

;NON ZERO FLAG RESET

;SAVE FLAGS
jBLANK OUT BOTTOM MESSAGE

;RESTORE FLAGS

;WAIT A WHILE

;PRINT MESSAGE

;TO PROMPT FOR ENTER

;WAIT FOR ENTER
;BLANK OUT BOTTOM SCREEN

;STATE OF KEYBOARD
;LAST KEY PRESSED

112 Using the ROM routines

KEY:
DEPR:

LD A, (FLAGS)
BIT 5, A
JR Z, KEY

RES 5, A
LD (FLAGS), A
LD A, (LASTXK)
RET

DS 100
STACK: DB 0
ERRSP: DEFW 0

Hexadecimal Listing

7D00 C3 C3 7E 16
7D08 4C 45 4E 41
7D10 16 03 00 50
7D18 41 4D 20 54
7D20 20 16 06 00
7D28 54 48 3A 20
7D30 54 41 52 54
7D38 00 20 20 20

7D40 20 57 41 49
7D48 20 46 4F 52
7D50 44 45 52 2E
7D58 20 43 4F 50
7D60 48 54 20 4A
7D68 49 4C 53 4F
7D70 38 33 2E 20
7D78 43 4E 55 4D

{LOOK AT STATUS OF KEYBOARD

;WAIT FOR A KEY
;TO BE PRESSED

1 GET KEY VALUE

;STACK SPACE

jERROR STACK SPACE

01 00 46 49
4D 45 3A 20
52 4F 47 S'? W JL.

59 50 45 3A
4C 45 4E 47
16 09 00 53
3A 20 16 0A
20 4D 41 43

54 49 4E 47
20 48 45 41
20 16 0D 00
59 52 49 47
2E 4E: 20 57
4E 20 31 39
42 41 53 49
45 52 43 48

7D80 41 52 41
7D88 16 15 00
7D90 75 20 77
7D98 20 63 6F
7DA0 00 50 72
7DA8 4E 54 45
7DB0 6E 20 72
7DB8 16 15 00

7DC0 20 20 20
7DC8 20 20 20
7DD0 20 20 10
7DD8 0A 00 01
7DE0 00 DD 21
7DE8 DD 4E 00
7DF0 A7 3C ED
7DF8 0D 13 28

7E00 18 E6 11
7E08 CD 3C 20
7E10 00 00 00
7E18 00 00 00
7E20 DD 21 0C
7E28 56 05 C9
7E30 7E 11 11
7E38 3E FF DD

7E40 17 7E CD
7E48 FF DD 21
7E50 7E CD 56
7E58 11 01 40
7E60 ED B0 11
7E68 CD 3C 20
7E70 55 7E 11
7E78 CD 3C 20

7E80 00 CD 3C
7E88 11 00 CD
7E90 3A 0C 7E
7E98 83 5F 16
7EA0 00 CD 3C
7EA8 0B 00 CD
7EB0 CD El 7D
7EB8 00 CD 3C

Using the ROM routines 113

59 54 45 53
6F 20 79 6F
6E 74 20 61
79 3F 16 15
73 73 20 45
20 77 68 65
61 64 79 2E
20 20 20 20

20 20 20 20
20 20 20 20
E8 03 64 00
00 00 00 00
7D 11 DC 7D
46 01 3E 2F
30 FB 09 12
DD 23 DD 23

7D 01 05 00
00 00 00 00
00 00 00 00
00 37 3E 00
11 11 00 CD
00 DD 21 0C
CD C2 04 C9
5C 5D ED 5B

04 C9 37 3E
5D ED 5B 17
C9 21 00 40
FF 17 36 00
7E 01 03 00
16 00 00 CD
7D 01 0D 00
0D 7E 01 0A

11 10 7D 01
20 21 74 7D
CB 27 CB 27
19 EB 01 05
11 21 7D 01
20 2A 17 7E
2C 7D 01 0A
2A 19 7E CD

42
44

61
70
65
52
65
20

20
20

27
00
D2
DD
42
06

DC
C9
00
00
7E
3E
00
21

C2
5C
05
01
6C
C9
03
11

20
3C
5F
00

20
3C
11
20

114 Using the rom routines

7EC0 El 7D C9
7EC8 CD 01 16
7ED0 7F 36 CB
7ED8 3D 5C CD
7EE0 CD 6F 7E
7EE8 7F 20 EF
7EF0 7E CD 37
7EF8 38 7E CD

7F00 D9 CD 55
7F08 3E 00 CD
7F10 7D 01 16
7F18 5A 7F FE
7F20 28 09 FE
7F28 20 ED A7
7F30 1A 00 CD
7F38 3A 7F 21

7F40 01 FF FF
7F48 00 11 9E
7F50 5A 7F FE
7F58 7F C9 00
7F60 28 F8 CB
7F68 08 5C C 9
7F70 00 00 00
7F78 00 00 00

7F80 00 00 00
7F88 00 00 00
7F90 00 00 00
7F98 00 00 00
7FA0 00 00 00
7FA8 00 00 00
7FB0 00 00 00
7FB8 00 00 00

7FC0 00 00 00
7FC8 00 00 00
7FD0 00 00 FE
7FD8 7F C9 00
7FE0 28 F8 CB
7FE8 08 5C C9
7FF0 00 00 00
7FF8 00 00 00

CF 7F 3E 02
CF 7F 21 D0
36 7E 2B 22
7F CD ID 7E
46 7E CD 0E
46 7F CD 2B
CD 37 7F CD
7F 28 EC 18

11 36 7D 01
20 C9 11 88
CD 3C 20 CD
28 0D FE 79
28 04 FE 6E
11 B8 7D 01
20 FI C9 CD
00 11 00 00

B0 C9 01 1A
CD 3C 20 CD
20 F9 CD 2B
3B 5C CB 6F
32 3B 5C 3A
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
20 F9 CD 2B
3B 5C CB 6F
32 3B 5C 3 A
00 00 00 00
00 00 00 00
00 00 00 00

31
31
23
01
CD
CD
7F
0E

7E
3C
00
59
4E
F5
3C
00

ED
7D
0D
3A
AF
00
00
00

00
00
00
00
00
00
00
00

00
00
0D
3A

AF
00
00
00

Using the rom routines 115

FLOATING POINT CALCULATION ROUTINES

The floating point calculator is used by the basic interpreter to
handle calculations on floating point numbers and strings. Numbers
in basic are represented by 5 bytes. The way these bytes represent a
floating point number is shown in the Spectrum user's manual

(chapter 24).
When the Spectrum is interpreting basic calculations it uses some¬

thing known as a calculator stack which stores the interpreted calcu¬
lation in a series of numbers, strings and operators. The way this line
is interpreted is known as reverse polish notation or rpn.

Numeric expressions in basic consist of operands, variables and

operators or functions. In an algebraic expression operators are
placed between two operands. For example, in the expression x+y

the operator is +, and the operands are x and y. The principle of rpn

is to place the operator after the operands. Thus x+y is written as x y

“1",

the larger algebraic expression:

A*B+C*D/2

could be written as:

AB*CD2/* +

To read a rpn expression we use the following technique. READing the
expression from left to right any values or operands would be
pushed onto a stack. When we arrive at an operand or function the
appropriate number of data is popped off the stack and that opera¬
tion or function is executed with the data. The 'new' value is then
pushed onto the stack. This is repeated until we have reached the
end of the expression:

24*382/* +

For example, for the above rpn expression we go through the opera¬
tions shown below. On the lefthand side of the diagram I have given
the operations we use as we read the expression from left to right.
On the righthand side the current status of the stack is shown. The
top of the stack is the rightmost digit.

116 Using the rom routines

Operation Stack
stack 2 2
stack 4 2 4
operator * 8
stack 3 8 3
stack 8 8 3 8
stack 2 8 3 8 2
operator / 8 3 4
operator * 8 12
operator + 20

The answer left on the stack is 20.

The Spectrum has a calculator stack where numbers can be
manipulated in the same way as we would deal with an rpn expres¬
sion. Croups of numbers can be pushed onto a stack and routines
can be called to do various operations such as add, subtract and
multiply. We can push numbers onto the stack by calling routines
within the rom which allow us to save the numbers in 1 byte, 2 byte
or 5 byte form.

STACKA-2D28H
LD A,20

CALL 2D28H ;STACK NUMBER 20

This routine will convert the one byte number contained in the
Accumulator to its five byte floating format which is then pushed
onto the calculator stack.

There are two other routines which are similar to the last routine.
They allow us to stack a two byte integer in the bc register pair and a
five byte floating point number contained in the a,e,d,c,b registers.
The routine at the address 2D2B hex (stackbc) will convert a two byte
integer into five byte floating point format and push this on the
calculator stack. Likewise the routine at the address 2AB6 hex
(stacks) will push the floating point number in the registers a,e,d,c

and b.

To retrieve numbers from the stack we have routines which can
pop them off and convert them into one byte, two byte or the
normal five byte form. The addresses are given below:

UNSTACKA -2D5Dh will convert the floating 5 byte number on top
of the calculator stack to its equivalent one byte integer and place it
in the accumulator.

UNSTACKBC -2D2Ah will remove a five byte floating point number
from the stack, convert it and place it in the bc register pair.

Using the rom routines 117

UNSTACK5 - 2BF1h. This routine is used to place a floating point
number from the stack into the registers a,e,d,c and b.

There are two routines which are very useful to the programmer
when handling floating point numbers. The routine at the address
2DE3 hex (printfp) will take the top number on the calculator stack
and print it to the current channel selected. The second routine at
2C9B hex (asctofp) enables us to convert a number from a string to a
floating point number which is pushed to the calculator stack. Look

at the following program:

LD HL,STRING ; put to start of string.

LD (5C5DH),HL ;save in system variable CH-ADD

LD A,(HL) ;get first character in A reg.

CALL 2C9BH ;convert ascii number to fp.

CALL 2DE3H ;printfp number

RET
DEFM 2.31693
DB 0DH ;carriage return.

hl register pair is set up to point to the start of the string. This is
stored in the system variable ch-add which usually holds the address
of the next character to be interpreted when RUNning Spectrum
basic. The a register is LOADed with the first character and the routine
asctofp is called. This leaves the binary floating point number at the
top of the calculator stack so when we call the routine printfp

(2DE3H) the number 2.31693 will be printed out. The end of the
string is signified by a carriage return.

To start the floating point calculator we call the routine at address
28 hex with the one byte instruction rst 28h. The data following the
call instruction indicates which operations the calculator must per¬
form. The calculator goes through each operation automatically
pushing and popping data until it reaches the data 38 hex which
signifies the end of the calculation. Some of the most useful codes

are given below:

data Name
code
(hex)
01 exchange
02 delete
03 subtract
04 multiply
05 divide

Action

Swops the two topmost floating numbers.
Deletes top number on stack.
Subtracts second number on stack from first
Multiplies the two topmost numbers.
Divides the first over the second number.

118 Using the rom routines

data Name Action
code
(hex)
06 power Raises the first to the power of the second
IB negate Changes the sign of the top number.
IF sin Calculates the sine of the top number.
20 cos Calculates the cosine of the top number.
21 tan Calculates the tangent of the top number.
22 arcsin Calculates the Arcsine of the top number.
23 arccos Calculates the Arccosine of the top number.
24 arctan Calculates the Arctan of the top number.
25 I°g2 Calculates the Log of the top number.
26 exp Calculates the exponential of the top number.
27 integer Calculates the integer of the top number.
28 square root Calculates the square root of the top number.
29 sign Places the sign of the top number on stack
2A absolute Converts the top number to its absolute.
2B peek Places the contents of the address at top of stack
2C in Scans address at top of stack.
31 duplicate Duplicate the top of the stack.
38 Endcalc End of calculation.

The calculator has five constants available in the rom used for cal
culating sines and cosines:

Data Name
code

Action

(hex)
A0 stack 0 Place the number 0 on the stack.
A1 stack 1 Place the number 1 on the stack.
A2 stack 1/2 Place the number 1/2 on the stack.
A3 stack PI/2 Place half of PI on the stack.
A4 stack 10 Place the number 10 on the stack.

There are six memory locations used by the floating point calculator
in order to save numbers on top of the stack. The data codes C0 hex
to C5 hex are used to save the topmost number on the stack to one
of the six memory locations. The other codes E0 hex to E5 hex are
used to place numbers from one of the memory locations to the top
of the calculator stack.

Using the rom routines 119

Data Name
code
(hex)
C0 store 0
Cl store 1
C2 store 2
C3 store 3
C4 store 4
C5 store 5
E0 Stack mem 0
El Stack mem 1
E2 Stack mem 2
E3 Stack mem 3
E4 Stack mem 4
E5 Stack mem 5

Action

Place the number on the stack in memory 0.
Place the number on the stack in memory 1.
Place the number on the stack in memory 2.
Place the number on the stack in memory 3.
Place the number on the stack in memory 4.
Place the number on the stack in memory 5.
Place the contents of memory 0 on the stack.
Place the contents of memory 1 on the stack.
Place the contents of memory 2 on the stack.
Place the contents of memory 3 on the stack.
Place the contents of memory 4 on the stack.
Place the contents of memory 5 on the stack.

The following program demonstrates how we use the floating cal¬
culator to multiply the numbers 2342 (926 hex) and 1o6 (9C hex).

LD BC,926H

CALL STACKBC ;STACK NUMBER

LD BC,9CH

CALL STACKBC ;STACK NUMBER

RST 28H ; START CALCULATION

DB 04 ;MULTIPLY

DB 38H ;END OF CALC.

CALL
RET

PRINTFP ; PRINT ANSWER

The second example shows us how we can convert fairly complex
algorithms into machine code. It plots a sine wave on the screen.
The basic routine takes 17 seconds while the machine code equiva¬
lent takes 14 seconds. The reason why the machine code routine is
not significantly faster is because the sine calculations inside the

rom are fairly slow.

10 FOR X=0 TO 255
20 LET Y=100+50*SIN(X*PI/20>
30 PLOT X,Y
40 NEXT X

120 Using the rom routines

The equivalent machine code program would be:

ORG 0

PLOTXY EQU 22EEH
STACKA EQU 2D28H
UNSTACKA EQU 2DD5H

XOR A {SET X CO-ORD TO 0
SINE: PUSH AF {SAVE X CO-ORD ON STACK

LD A, 100 {STACK 100 DECIMAL
CALL STACKA
LD A, 50
CALL STACKA STACK 50 DECIMAL
POP AF GET X CO-ORD
PUSH AF AND SAVE
CALL STACKA PLACE X ON FP STACK
RST 28H START CALCULATION
DB 0A3H STACK PI/2
DB 0A4H STACK 10 DECIMAL
DB 05H DIVIDE (PI/2 BY 10)
DB 04H MULTPLY (PI/20 BY X)
DB 1FH SINE (SINE(PI*X/20))
DB 04H MULTIPLY

(50*SIN(PI*X/20>)
DB 0FH ADD

100+50#SIN< PI*X/20)
DB 38H END OF CALCULATION

CALL UNSTACKA jGET Y CO-ORD IN A REG
LD B, A ;AND SAVE IN B

POP AF ;GET X CO-ORD OFF STACK
PUSH AF ;SAVE AGAIN

LD C, A PLACE X CO-ORD IN C REG
CALL PLOTXY PLOT A POINT AT X,Y
POP AF GET X REGISTER
INC A INCREASE X CO-ORD
RET Z DONE 256 TIMES SO RETURN
JR SINE KEEP PLOTTING

END

10 Screen and
attribute handling

The screen display is used in order to communicate information to
the user. To print information to the screen is a fairly simple and
trivial matter in basic. However, when we delve into the realms of
machine code accessing the screen becomes more complicated due
to the complex screen lay out. The display file is split into two
sections; the actual screen display file and the attribute file. The
attribute file is easy to access because the data held in this file is
organised sequentially. The attribute file consists of a 32 by 24 byte
array. Each byte contains the information relating to a particular
character position on the screen and tells the Spectrum what paper

and ink colours to use for the display and whether the character is

flash and/or bright.

The Attribute File

The number to be stored in the attribute file can be calculated by

using the following method:

First set your total to zero.
Add 128 to your total if you want it flashing.
Add 64 to your total if you want it bright.
Add 8 times the paper colour you want.
Add the ink colour you want.

The value of the colours are:

0 Black
1 Blue
2 Red
3 Magenta
4 Green
5 Cyan
6 Yellow
7 White

122 Screen and attribute handling

The bit pattern of an attribute byte is set up like this:

Bit 7 6 5 4 3 2 1 0
f b p p p i i i

Where f is the flash bit, b is the bright bit, p is paper number, i is ink

number. So if, for example, we wanted the colour code for red ink

on white paper with the BRiGHTness set on we would put the value
64+8*7+2=122 in the appropriate location.

The address of the start of the attribute file is 22528 or 5800 hex. It
can be represented by a grid of 32 column by 24 rows. The start of
the file being in the top left-hand corner. If we wished to find the
address of a given pair of co-ordinates (row 0, column 0 is in the top
left-hand corner), then we could use the following piece of code:

} mmmmmm***********
; FIND ATTRIBUTE ADDRESS
j B CONTAINS THE ROW NUMBER
; C CONTAINS THE COLUMN NUMBER
; ON EXIT HL CONTAINS ADDRESS
LD L, B
LD H, 0

ADD HL, HL
ADD HL, HL
ADD HL, HL
ADD HL, HL
ADD HL, HL ;FIND ROW TIMES 32

LD B, 0
ADD HL, BC ;ADD COLUMN OFFSET
LD BC,5800H {START OF ATTRIBUTES

ADD HL, BC {ADD START OF ATTRIBUTES
RET {ADDRESS NOW IN HL

As you can see we multiply the row number by 32 and by a series of
add hl, hl instructions. Finally, we add the column offset. This isn't
the quickest way of calculating the address but it is the easiest. If
you read the chapter on shifting and rotating you way wish to
calculate another way of finding the address using bit manipulation.
This routine can be used for PEEKing or POKEing at the attribute file. If
we wanted to look at the contents of a given row and column we
could use the code:

PEEK: CALL CL-ATTR ;CALCULATE ADDRESS AT

;ROW B,COLUMN C
LD A,(HL) ; PUT CONTENTS IN A REGISTER.

Screen and attribute handling 123

If we wanted to poke red ink, green paper at column 22, row 5 we

could write the code:

POKE: LD
LD
CALL
LD

A,22H ;CODE FOR RED INK,GREEN PAPER
BC,0516H ;SET BC TO ROW5,COLUMN 22
CL-ATTR ;FINDADDRESS
(HL),A ;POKE VALUE IN.

The Screen File

The screen file is a little more complicated than the attribute file! It
consists of three sections of 8 character rows. Each character row is
made up of 32 characters split into 8 pixel lines. Since we are
working with eight bit bytes the resolution of the screen is 256 by
192. The resolution of a screen determines the number of little dots
that make up the data on the screen. The higher the resolution, the
more detailed the pictures on the screen. To determine an address
on the screen for a given pair of co-ordinates is not an easy matter. If
we look at the bit pattern for a screen address:

010sslllrrrccccc

ss is the section number, 0 being the top third, 1 being the middle
and 2 the bottom third.3 indicates an address in the attribute file. Ill
is the pixel line number (0-7) within a character, rrr is the line
number within a section (0-7) and ccccc is the column number

(0-31).
Using this pattern we can determine an address anywhere on the

screen, even down to one single bit. The section number is con¬
tained in the top two bits of the row. The pixel line number is also
contained in the row, this time in the middle three bits. The pixel
line number is the last three bits of the row. The column is repre¬
sented by a number 0-255. The range 0 to 255 is used because the
routine is designed to give the address and bit position of any pixel
on the screen. The data for the routine is as follows:

row ssrrrlll
col cccccbbb

where all the letters have their previous meanings and bbb is the bit
position of the pixel.

Now let's look at the routine to calculate the screen address for

any given row and column. The b register is LOADed with a row

124 Screen and attribute handling

number in the region 0-191, where row 0 is at the top of the screen.
The c register is LOADed with the column number in the range of
0-255. After executing the routine the hl pair will contain the
address on the screen, and the a register will contain the bit position
(0-7) within that address.

; FIND PIXEL ADDRESS
; B CONTAINS Y COORD
! C CONTAINS X COORD
; ON EXIT HL CONTAINS ADDRESS

; A CONTAINS PIXEL NUMBER
PIXADD:

LD

RRA
SCF
RRA

A, B ;GET Y REGISTER

RRA)Xlx.. MOVE DOWN SECTION
AND 58H ;MASK OFF SECTION, 010SS
LD H, A ;SAVE IN H REG
LD A, B j GET Y AGAIN,
AND 7 ;WORK OUT PIXEL LINE WITHIN

;CHARACTER
ADD A, H jADD PREVIOUS RESULT
LD H, A ;SAVE IN H REG
LD
RRCA
RRCA
RRCA

A, C

AND 1FH
LD L,A ;M0VE DOWN COLS 0-31
LD A, B ;GET ROW NUMBER
AND 38H JMASKING OFF ROW NUMBER
ADD A, A
ADD A, A
OR L
LD L, A
LD A, C ;GET BIT NUMBER
AND
RET

7 ;A CONTAINS BIT NUMBER

This routine could be used to plot points on the screen since the
plot command in basic is limited to accessing only 256 by 176 points.
To do this we call the pixadd routine then rotate the pixel to the bit

Screen and attribute handling 125

position we want. So our program to plot a point at the co-ordinates
in the bc register pair would be:

PLOT A PIXEL AT THE COORDINATES

X, Y
; B=0 COORD AND C=X COORD

CALL PIXADD {Find address for co-ords BC

LD B, A ;Put bit position in the B
;register

INC B inow in the range 1-8

XOR A jset A to zero and clear
;carry flag.

RRA
DJNZ PIX {Move pixel dot to position

;required

XOR
LD
RET

< HL)
(HL), A

{and place it at the address

As seen I have used an Exclusive or to place the dot on the screen.
This has the effect of turning a pixel on if there wasn't already a dot
at the calculated address or turning the pixel off, if it was already set.

When we print a character onto the screen within a character
boundary the offset for each byte of data which makes up a charac¬
ter is 256 so it is a simple matter to have a loop such as:

NXTPL:

;DE POINTS TO
;HL POINTS TO
;BOUNDARY
LD
LD
LD
INC
INC
DJNZ

B, 8
A, (DE)
(HL), A
DE
H
NXTPL

DATA WHICH WE WANT TO PRINT
SCREEN ADDRESS,TOP OF CHARACTER

8 BYTES OF DATA
GET DATA
PLACE DATA ON SCREEN
POINT TO NEXT DATA
POINT TO NEXT PIXEL LINE
DO NEXT PIXEL LINE

The inc H instruction is the same as adding 256 to the hl register pair
and has the effect of getting the next pixel line address below. The
offset is always 256 only if we are within a character boundary. If this
is not true we have to use the following routine below which I have
called incy:

126 Screen and attribute handling

INCY:

INC H

LD A. H

AND 7

RET NZ ;WITHIN CHAR BOUNDARY

LD A, H

SUB 8

LD H, A

LD A, L

ADD A, 32 ;NEXT CHAR LINE DOWN

LD L, A

;(WITHIN SECTION)

;ADD 32 DECIMAL

RET NC ;DEF WITHIN SECTION

LD A, H

;NEXT SECTION DOWN

ADD A, 8

LD H, A

XOR 58H ;01011080 BINARY

RET NZ ;IS THERE A WRAPAROUND

LD H, 48H

;NEEDED?

RET

The routine could be written to run a little quicker. It seems a waste
of time to first subtract eight from the h register if we have gone over
a character boundary and then to add eight back. The reason we
have done this is to incorporate a wrap around effect. This means
anything which is printed over the bottom of the screen will appear
on the top.

There is also a relationship between the address of the attribute
file and the screen file. Study the bit patterns for the high byte of the
start of each section on the screen file and the corresponding bit
patterns on the attribute file. The table below shows how the high
bytes of the addresses relate:

screen addr screen bit pattern attr addr attr bit pattern
40 H 01000000 58H 01011000
48 H 01001000 59H 01011001
50H 01010000 5AH 01011010

To get the corresponding attribute address from a given screen
address shift down the high byte to the left three times and then set
bits three and four of the high byte.

Screen and attribute handling 127

) THIS PIECE OF CODE GIVES
;THE ADDRESS OF THE ATTRIBUTE FILE IN THE
;HL REGISTER PAIR
;FOR A GIVEN ADDRESS ON THE DISPLAY FILE
jIN THE HL REGISTER PAIR,
LD A, H ;010SS000

SRA A ;8010SS00

SRA A 100010SS0

SRA A ;000010SS

OR 50H ;010110SS

LD H, A
RET

ANIMATION

Using the incy routine we can write another routine which allows us
to print a character at any pixel position on the screen. Usually when
we print a character in basic the character is placed on the standard 32
by 24 grid. Therefore there are only 768 positions at which we can
place that character. If we were to write a game using the basic print

statement movement of characters is limited to moving horizontally
eight bits at a time and vertically eight pixel lines at a time. The
following machine code routine will demonstrate how to move
objects around the screen smoothly using pixel movement.

The routine in the ROM which deals with PRiNTing characters in basic

calculates the screen address for a given pair of co-ordinates. It is
then a simple matter of lacing the eight bytes of data which make up a
character onto the screen. The screen is constructed in such a way
that each vertical line, where the character is to be placed, is 256 bytes
below the last pixel line. However, this offset changes when we are
PRiNTing over a character or section boundary. If we wanted to draw a
character on any of the 192 pixel lines we would need to keep using
the incy routine to find the addresses of successive pixel lines.

Therefore if our character stayed within a character boundary
vertically then the following routine would print a character to the
screen. The screen address is pointed to by the hl register pair and
the character data is pointed to by the de register pair.

BOUNDH: LD B, 8
NXC: LD A, (DE)

LD (HL), A

CALL INCY
INC DE

DJNZ NXC

GET DATA COUNT
GET CHARACTER DATA

AND PLACE ON THE SCREEN

NEXT PIXEL LINE DOWN
POINT DE TO NEXT
CHARACTER DATA

DO 8 TIMES

128 Screen and attribute handling

As you can see this portion of code is similar to the first routine we
used to print a character to the screen. The exception is that the inc h

instruction is replaced by calling the routine incy which calculates
the address of the next pixel line down.

The next problem we have to overcome when PRiNTing a character
on the screen is to deal with its horizontal position. When we want
to print an eight bit character, at any of the 256 bits, we may
sometimes overlap between two character boundaries. This means
that if we can calculate the bit position where the object is to be
placed within one of the 32 horizontal positions on the screen we
can scroll the eight bit number which makes up one line of the
character through two bytes which we then print onto the screen.
Look at the following two diagrams. Diagram a shows a space ship
being PRiNTed within a character boundary. The data only occupies
one byte for each horizontal line. When we wish to print an eight by
eight bit object at any horizontal pixel position then we could get an
overlap onto the adjacent character position as shown in diagram B.
An overlap will occur seven in every eight horizontal bit positions.
To find a character's bit position simply get it's x co-ordinate and
mask off the bottom three bits by ANDing it with seven. Remember,
that this 'bit position' is different from the one we use to describe bit
instructions such as set,reset and bit. This time the bit position starts
from the left hand side of the byte.

8 by 8 pixel character
within boundary

Screen and attribute handling 129

If given the bit position in which a character lies, then to obtain its
two byte equivalent, get the object data to be printed and scroll it
from left to right within two bytes. This 'scrolling' from left to right
of a 16 bit number is identical to dividing the number by 2. This was
explained in the chapter on rotating and shifting. The following
piece of code divides a two byte number in the a register (the high
part) and the c register (the low part) by 2.

LD C,0 ; cl ear low byte first
SRL A ;scroll A reg from left to right into carry
RR C ;scroll c register from left to right through

; carry

Notice how we clear the low byte of the number by LOADing the c
register with 0. We would of course do this scrolling until we reach
the bit position which we require. Therefore, if the B register con¬
tained the bit position we would find the two byte number by using

the code:

I B REGISTER CONTAINS THE BIT POSTION
LD A,B ;PLACE B REGISTER INTO

;THE A REGISTER
AND A JTEST FOR BIT POSTION=0

JR Z, BOUND ;WITHIN ONE CHARACTER

jBOUNDARY SO DEAL WITH

; THIS CASE AT LABEL BOUND

130 Screen and attribute handling

LD C,0 ;CLEAR RIGHT BYTE FIRST

GETB: SRL A
RR C

JSCROLL A REGISTER
;RIGHT THROUGH THE
;C REGISTER

DJNZ GETB ;UNTIL WE GET INTO
;THE REQUIRED BIT
;POSTION

Notice that before we scroll the character we test that the bit posi¬
tion is zero. If the bit position was zero then this means that our
character is within a boundary so we deal with this at the lable
bound. If we did not do this and carried on through to scroll the data
then we would find that we would end up scrolling the data 256
times.

After we have our two new characters which make up the object
then it is simply a case of placing them on the screen. If, for
example, the hl register pair was pointing to the screen address
where we wanted to place the character then we would place the
data at hl and hl+1

1 DRAW OBJECT ONTO THE SCREEN

;AT THE ADDRESS IN THE HL PAIR

LD < HL),A ;PLACE LEFT HAND SIDE
;OF THE OBJECT
jPOINT TO NEXT CHARACTER
j BOUNDARY

;PLACE RIGHT HAND SIDE
J OF THE OBJECT

INC HL

LD (HL), C

To animate, simply draw the object onto the screen and to move it,
remove the object from its previous position. Then update its new
position and draw it to the screen. The following machine code
routine draws and animates nine space ships on the screen. Each
one follows a movement pattern. The object can move in any one of
four directions. Direction one indicates that the ship is moving
right, two left, four down and eight up. The movement pattern
dirtab is a table of directions which the ship follows and ends with
255 or ff hex. The ships start at different locations in the table so that
the movements are not synchronised.

Each ship has three bytes of data starting from shiptb, to represent
its x and y co-ordinates and an offset position or vector count

Screen and attribute handling 131

pointing to a direction within the movement table. If a ship had a
starting offset of 12 the first direction it would use is at the address
dirtab+12. This contains a one and means that the ship would move
right. When the ship comes to the end of the direction table (sig¬
nified by the byte ff hex) it resets its vector count to zero thus
pointing to the first byte of the direction table.

The iy register is used in this routine to point to each of the ships
data. At the start of the program the ships are first drawn onto the
screen. The main routine which deals with drawing characters uses
the rom routine pixadd (22AA hex). When given the x and Y co¬
ordinates on the screen it will return the screen address in the hl

pair and the a register holds the bit position within a byte. The
co-ordinates x=0, y=0 start the a register at the left hand side of the
screen 22 lines from the top. Therefore, we only have 176 pixel lines
vertically to which to draw the objects. Of course if you wanted you
could us my pixadd routine which makes full use of the 256 by 192

screen.
Notice in the routine prtchr how instead of LOADing in the data

character bytes directly I first exclusive or the data with the contents
of the screen. This is extremely useful for I can if I wish move over
'background objects' on the screen without corrupting the data. It is
like using the over 1 command in basic. As well as leaving the
background it also serves a useful purpose for effacing the ship from
the screen when Moving it to a new position. Since we are using the
xor instruction this will turn off any bits that are all ready on and turn

on bits already off.

Assember Listing

MOVEMENT ROUTINE

;EXAMPLE OF PIXEL MOVEMENT.

0R6 28800D
JP START }START THE PROGRAM

132 Screen and attribute handling

SHIP: DB 22, 255, 22, 15,15, 22, 255, 22
{DATA FOR SPACE SHIP

PRINOBJ: ;SUBROUTINE PRINT OBJECT
{PRINTS AN OBJECT AT X, Y
;B REG=Y VALUE
;C REG=X VALUE

PUSH BC
CALL PRTCHR
POP BC
RET

PRTCHR: {PRINTS A SHIP ON ANY
{PIXEL POSTION

LD IX,SHIP

CALL 22AAH {FIND PIXEL ADDRESS

{ROUTINE AT 22AAH FINDS THE ADDRESS ON SCREEN FOR A
{GIVEN X, Y CO-ORDS IN C REG AND B REG
{THE A REG IS RETURN WITH THE START OF PIXEL POSTION
{WITHIN THAT BYTE THIS ROUTINE IS ONLY LIMITED FOR Y
{BEING BETWEEN B AND 175 INSTEAD OF THE EXPECTED 0-191
; ALSO THE CO-ORD 0, 0 START IN THE BOTTOM LEFT HAND SIDE,

LD E, A {SAVE BIT POSTION IN E
{REGISTER

LD D, 8 {PIXEL LINE COUNT
AND A {TEST FOR ZERO PIXEL

j POSTION
JR Z,WBOUND {WITHIN BOUNDARY SO JUMP

Screen and attribute handling 133

LINE: LD B, E

j SCROLL DATA B TIMES INTO

LD A,(IX+0)
LD C,0

SCROLL:
SRL A

RR C
DJNZ SCROLL

XOR (HL)

LD (HL), A

INC HL

LD A, C

ONE: XOR (HL)
LD (HL), A
DEC HL
INC IX
CALL INCY

DEC D

JR

RET

NZ, LINE

WBOUND: LD B, D

XBOUND:
LD A,(IX+0)

XOR (HL)

LD (HL), A
CALL INCY

INC IX
DJNZ
RET

XBOUND

;GET BIT POSTION IN
;B REGISTER

A AND C
I GET DATA
;CLEAR RIGHT HAND SIDE

j SCROLL DATA DOWN TO BIT
iPOSTION

jMERGE LEFT HAND PART OF
;DATA IN!

;TO THE RIGHT MARCH!
; GET SECOND CHAR

;MERGE SECOND CHAR IN.

;BUMP NEXT DATA
;FIND ADDRESS OF NEXT

;PIXEL LINE
jHAVE WE DONE THE 8 BYTES?
;NO! SO DO NEXT LINE

;YES THEN RETURN.

i LOAD B WITH 8

}(PIXEL LINE COUNT)

;GET DATA
;MERGE IN WITH DATA
;ALREADY ON THE SCREEN
{NEXT PIXEL LINE DOWN
;NEXT DATA BYTE
jREPEAT 8 TIMES

134 Screen and attribute handling

INCY:

DIRTAB:

;FINDS ADDRESS OF NEXT
jPIXEL LINE ON THE SCREEN

INC H
LD A, H
AND 7
RET NZ ,‘WITHIN CHAR BOUNDARY
LD A, H
SUB 8
LD H, A

LD A, L
ADD A, 32D J NEXT CHAR LINE DOWN

;(WITHIN SECTION)
LD L, A
RET NC ;CHAR WITHIN SECTION

iNEXT SECTION DOWN

LD A, H
ADD A, 8
LD H, A
XOR 88 ;01011080
RET NZ
LD

RET

H, 40H ;WRAP AROUND EFFECT

DB C
O

C
O

8, 8, 8, 8, 8, 8, 8, 8, 8, 8
DB 1,1, 1, 1, 1, 1, 1, 1,1, 1,1, 1
DB 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
DB 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
DB 0FFH i END OF DIRECTION TABLE

Screen and attribute handling 135

GETDIR:
LD HL,DIRTAB ;POINT TO DIRECTION TABLE

LD E,<IY+VECTCN) ;GET SHIPS POINTER

LD D, 0
ADD HL, DE ;POINT TO DIRECTION

LD A, (HL) ;GET DIRECTION

CP 0FFH ;IS THIS THE END OF
;THE TABLE

JR NZ,MOVEIT jNO THEN MOVE SHIP!

XOR A ; SET A TO ZERO

LD <IY+VECTCN), A ;SET VECTOR COUNT TO ZERO

RET

MOVEIT:
INC (IY+VECTCN) ;INCREASE VECTOR COUNT

j FOR NEXT GO

CP 8 {GOING UP

JP Z, UPD
CP 4
JP Z,DOUND {GOING DOWN

CP 1

JP Z,RIGHTD {GOING RIGHT

CP 2

JP
RET

Z,LEFTD {GOING LEFT

UPDAA:
CALL PRINOBJ {REPRINT SHIP

{AT NEW POSTION

LD (IY+XPOS), C {SAVE NEW XPOSTION

LD
RET

(IY+YPOS), B {SAVE NEW YPOSTION

LEFTD:
CALL PRINOBJ
DEC C
JP UPDAA

RIGHTD:
CALL PRINOBJ

INC C

JP UPDAA

136 Screen and attribute handling

UPD:
CALL PRINQBJ
DEC B
JP UPDAA

DQWND:
CALL PRINOBJ
INC B
JP UPDAA

XPOS EBU 0
YPOS EBU 1
VECTCN EBU 2

NUM EBU 9
LEN EBU 3

;SHIP TABLE
; 3 BYTES PER SHIP
; 1ST BYTE =X CO-ORD
; 2ND BYTE =Y CO-ORD
j3RD BYTE =VECTOR COUNT

;XPOS OFFSET
j YPOS OFFSET
jVECTOR COUNT OFFSET

;NUMBER OF SHIPS
{LENGTH OF DATA FOR TABLE

DB 100, 100,8

DB 120, 80, 7

DB 55, 45, 14

DB 30, 30, 20

DB 40, 30, 1

DB 130, 130, 24

DB 140, 140, 20
DB 140, 118,2

DB 140, 150, 2

SHIPTB:

Screen and attribute handling 137

START:
DI DISABLE INT

LD 6, NUM LOAD B REGISTER WITH
NUNBER OF SHIPS

LD IY,SHIPTB IY POINTS TO START
OF SHIP TABLE

DRAW: PUSH BC SAVE SHIP COUNTER

LD B,(IY+YPOS) GET Y CO-ORD

LD C,(IY+XPOS) GET X CO-ORD

CALL PRINOBJ AND PRINT

LD DE, 3 DE CONTAINS OFFSET

ADD IY, DE POINT TO NEXT SHIP'S DATA

POP BC RESTORE COUNTER

DJNZ DRAW DRAW NEXT SHIP

MOVE:
LD IY,SHIPTB ;POINT TO SHIP TABLE

LD B, NUN [NUMBER OF SHIPS

NXT:
PUSH BC SAVE COUNTER

LD B,<IY+YPOS) GET Y CO-ORD

LD C,<IY+XPOS) GET X CO-ORD

CALL GETDIR GET DIRECTION AND MOVE

LD DE, 3 PLACE OFFSET IN DE

ADD IY, DE AND POINT TO NEXT SHIPM D

POP BC RESTORE SHIP COUNTER

DJNZ NXT MOVE NEXT SHIP

JR
END

MDVE FOREVER AND SO ON.

Hexadecimal Listing

6060 C3 50 6E 16 FF 16 0F 0F

6D68 16 FF 16 C5 CD 71 6D Cl

6D70 C 9 OD 21 63 60 CD AA n n
A «

6D78 5F 16 08 A7 28 1C 43 DD

6D80 7E 00 0E 00 CB 3F CB 19

6D88 10 FA AE 77 23 79 AE 77

6090 2B DD 23 CD A8 6D 15 20

6D98 E5 C9 42 00 7E 00 AE 77

138 Screen and attribute handling

6DA0 CD AS 6D DD 23 10 F4 C9
6DA8 24 7C E6 07 C0 7C D6 08
6DB0 67 7D C6 20 6F D0 7C C6
6DB8 08 67 EE 58 C0 26 40 C9
6DC0 08 08 08 08 08 08 08 08
6DC8 08 08 08 08 01 01 01 01
6DD0 01 01 01 01 01 01 01 01
6DD8 04 04 04 04 04 04 04 04

6DE0 04 04 04 04 02 02 02 02
6DE8 02 02 02 02 02 02 02 02
6DF0 FF 21 C0 60 FD 5E 02 16
6DF8 00 19 7E FE FF 20 05 AF
6E00 FD 77 02 C9 FD 34 02 FE
6E08 08 CA 34 6E FE 04 CA 3B
6E10 6E FE 01 CA 2D 6E FE 02
6E18 CA 26 6E C9 CD 6B 6D FD

6E20 71 00 FD 70 01 C9 CD 6B
6E28 6D 0D C3 1C 6E CD 6B 6D
6E30 0C C3 1C 6E CD 6B 6D 05
6E38 C3 1C 6E CD 6B 6D 04 C3
6E40 1C 6E 64 64 08 78 50 07
6E48 37 2D 0E IE IE 14 28 IE
6E50 01 82 82 18 8C 8C 14 8C
6E58 76 02 8C 96 02 F3 06 09

6E60 FD 21 42 6E C5 FD 46 01
6E68 FD 4E 00 CD 6B 6D 11 03
6E70 00 FD 19 Cl 10 EE FD 21
6E78 42 6E 06 09 C5 FD 46 01
6E80 FD 4E 00 CD FI 6D 11 03
6E88 00 FD 19 Cl 10 EE 18 E6
6E90 6 E FE 01 CA 2D 6E FE 02
6E98 CA 26 6E C9 CD 6B 6D FD

6EA0 71 00 FD 70 01 C9 CD 6B
6EA8 6D 0D C3 1C 6E CD 6B 6D
6EB0 0C C3 1C 6E CD 6B 6D 05
6EB8 C3 1C 6E CD 6B 6D 04 C3
6EC0 1C 6E 64 64 08 78 50 07
6EC8 37 2D 0E IE IE 14 28 IE
6ED0 01 82 82 18 8C 8C 14 8C
6ED8 76 02 8C 96 02 F3 06 09

Screen and attribute handling 139

6EE0 FD 21 42 6E C5 FD 46 01

6EE8 FD 4E 00 CD 6B 6D 11 03

6EF0 00 FD 19 Cl 10 EE FD 21

6EF8 42 6E 06 09 C5 FD 46 01

There are many improvements that could be made to this routine.
You could easily add other directions, other direction tables and
other characters. In fact if you want to be more ambitious you could
make the objects of variable width and height. In addition improve
the method of placing data on the screen by DRAWing from the
bottom upwards instead of from the top downwards. This method
of DRAWing objects will reduce flicker from the raster by catching the
object as it is being DRAwn. All you have to work out is a routine
similar to incy but find the next pixel line above for a given screen
address. I do know of a couple of ways to achieve this but I am not
going to spoil your fun by explaining it to you!

11 Interrupts on the
Spectrum

Have you ever wished that your computer could execute more than
one program at once? Well, this chapter will explain how, in effect,
you can double the power of your Spectrum by seemingly RUNning
two programs at once!

Interrupts on the Z80 chip serve similar purposes to those on
other processors. They tell the computer that an external device,
such as a disk drive, printer, keyboard or modem requires some
attention. Take, as an example, the case where we have linked up a
printer printing out data to our computer.

There are two ways of checking whether the printer is ready to get
a character from the microprocessor. The inefficient way is to use a
loop which has a description like this:

WAIT:
IS PRINTER READY?
ANSWER=NO THEN GO TO WAIT

ANSWER=YES THEN GET NEXT CHARACTER: SEND IT
TO THE PRINTER: GO TO WAIT

As you can see the above method 'polls' the printer continually to
see if it is ready for the next character. Most of its time is spent in
this loop waiting for the printer, so a lot of CPU time is wasted!
Wouldn't it be fine if we could continue with other parts of the
program and only send characters when the printer is ready? Well
we can by using interrupts! Your Spectrum uses interrupts to get
characters from the keyboard and update the frames system
variable.

What is happening on a Spectrum is that your computer is run¬
ning Spectrum basic. Frequently, (1/50 of a second to be precise or
1/60 of a second in N. America) it remembers where it is and what
line it is running. It also recalls what address it is executing in the
rom or ram and executes a routine in rom which scans the keyboard.
After it has done this it will go back to the address it was executing
prior to interruption.

Interrupts on the Spectrum 141

On the Z80 processor there are four kinds of interrupts. These
interrupts are split into two categories called non-maskable and
maskable interrupts. We shall be looking at just two of the maskable
interrupts called mode 1 and mode 2 interrupts, (maskable means
we can switch the interrupts off if we wish.)

mode 1 interrupts
Every time an interrupt occurs the processor pushes the current
program counter onto the stack and jumps to location 0038 hex.

To exit out of this interrupt we must use a 'ret' (return) or 'reti'

(return from interrupt) instruction.
This mode of interrupt is actually the one used by the Spectrum

during the scan for a key routine as described above.

mode 2 interrupts
This is the most powerful of the interrupts on the Z80 processor and
is sometimes known as vectored processing.

In a mode 2 interrupt the programmer can specify up to 128
interrupts for other external devices.

This mode of interrupt revolves round a table which can contain
up to 128 addresses. We can also have more than one table to deal
with other external devices.

The start of a table is always on a page boundary of a 256 byte
section of memory, i.e. 000H, 100H, 200h, C200h, etc. To tell the
processor where the vector table is we load the i (Interrupt) register
with the high byte of the page number. For example if our vector
table was at location C000 hex then we would tell the processor by
executing:

Dl ;DISABLE INTERRUPTS
1M 2 ;SET UP INTERRUPT MODE 2
LD l,C0H ; LOAD 1 REGISTER WITH C0 HEX
El ;ENABLE INTERRUPTS

Note that we only need to specify the high byte as we are dealing
with page boundaries. The second line of code tells the processor
that we want to use mode 2 interrupts. The last instruction turns on
the scanning of interrupts. If we wished to ignore any maskable
interrupts at any time we would use the instruction:

Dl ;DISABLE INTERRUPTS

But wait! There is no instruction which allows us to load the i

register directly with a number. We can only load the i register with
the a register. We overcome this problem by using:

142 Interrupts on the Spectrum

LD A,C0H ; LOAD THE A REGISTER WITH C0H
LD I,A ;AND PUT IT INTO THE I REGISTER.

In interrupt mode 2, when a device causes an interrupt, it provides
an offset data number which is the low byte of the table. The offset
points to a two byte address within the table to which the processor
jumps (after first, stacking its current Program Counter).

TABLE EQU C000H

IM 2
LD A,C0H
LD

El

LA ; 1 REGISTER IS LOADED WITH HIGH
BYTE OF TABLE

TABLE: DEFW KEYBROU ;ADDRESS OF KEYBOARD ROUTINE
DEFW ;ADDRESS OF PRINTER ROUTINE

PUT ANY OTHER VECTORS HERE FOR OTHER DEVICES

KEYBROU:

RET
PRINROU:

RET

Now if an interrupt occurs and the data supplied is 0 then the
processor pushes the current program counter on the stack and
jumps to the address at C000H. If the data supplied was 02 then it
would jump to the address at C002H which is the printer routine.

What if the data supplied was 01? If that happens a crash is likely
to occur! Do you know why? The programmer has to program the

Interrupts on the Spectrum 143

device to return a valid data vector with its lowest bit set to zero i.e.
always even!

Now what device can we program to cause an interrupt on a Spec¬
trum? How do we program its eight bit vector number? The answer
is we don't have too!! The Spectrum is not in conventional interrupt
programming. Every 1/50 of a second an interrupt is generated by
the ula, one of the chips inside the computer. And at the time of the
interrupt the data Off hex is passed to the microprocessor. If in
interrupt mode 2 this will cause a jump to the address of the vector
table currently pointed at by the i register plus 256 bytes.

Example:

ORG 0C000H

INTINT; LD A, 0C0H jSET TABLE AT PAGE 0C0H
LD I* A ;AND PLACE IN THE I REG
IM 2 J SET UP FOR INTERRUPT

;MODE 2
El
RET

;AND ENABLE

ORG 0C0FFH {PLACE VECTOR AT PAGE+0FFH

DEFW INTROU {ADDRESS OF

{INTERRUPT ROUTINE

INTROU:

DI {STOP ANY MORE INTERRUPTS

PUSH HL {SAVE HL
LD HL, 5B00H {POINT TO THE ATTRIBUTE

j FILE

LD (HL), 255 {AND SHOW SOME COLOUR
POP HL {RESTORE HL
JP 0038H {JUMP BACK TO BASIC.

In our first example we notice that in our interrupt routine we
disable the interrupt. This is only necessary when an interrupt is
longer than 1/50 of a second so that we don't interrupt an interrupt!
The jp 0038h jump to 0038 hex is the jump to basic keyboard scan
routine. This scans the keyboard, updates the frame count and then

144 Interrupts on the Spectrum

enables the interrupts. If we didn't wish to return to basic then we
would end an interrupt routine with:

El ;ENABLE INTERRUPT
RET ;RETURN FROM INT

OR El
RETI

Due to a hardware quirk in the Spectrum the value of the i register is
limited to certain values 0-16 and 32-64. This means that for the 16k
models we can only have our vector table in the page address 0-16
which is rom!

There is, however, an end of page value which has a two byte
value jumping out to ram. This is page 28 hex.

LINKING THE INTERRUPT WITH THE RASTER

Re-set your Spectrum and type in the following program:

ORG 30000

RASTER: HALT
LD A, 1
OUT (0FEH), A
LD HL,500H

LOOP: DEC HL
LD A, L
OR H
JR NZ, LOOP

LD A, 2
OUT (0FEH), A
JR RASTER

END

; ##EXPERIMENT##
;WITH THIS VALUE!

Here's a hexadecimal listing of the same program:

7D00 76 3E 01 D3 FE 21 00 05

7D08 2B 7D B4 20 FB 3E 02 D3
7D10 FE 18 ED 00

Interrupts on the Spectrum 145

When you run the program you should get a border split into two

colours blue and red
The halt instruction on the Z80 is used to wait for an interrupt.

The computer will wait at a halt instruction until some external
device causes an interrupt. In the case of the Spectrum the ula
causes the interrupt. Therefore, the effect of the halt instruction is
to wait 1/50th of a second. Of course if we disabled all interrupts by
using the instruction di then the computer would wait for ever
unless a Non-maskable interrupt (one that can not be disabled) was
activated. In our program we use the halt instruction to link with the
raster beam to cause a split in the border colour. Objects can be
drawn when the raster is at the top or flying back thus reducing
screen flicker. A lot of game programmers use this technique when

writing fast arcade games.
Try pressing the keys when RUNning this program. Notice how the

borders go up and down. Do you know why? It is due to the
keyboard routine (which is called by the interrupt routine) taking
different lengths of time to execute depending on which keys it

finds pressed.
Every 1/50th of a second the computer reDRAWs the screen. The

screen is updated by an election beam which scans across the pixels
turning them on or off if they are set or re-set. The beam starts from
the top left hand side of the screen and scans left to right across
each fine. After reaching the bottom the beam (or raster) flys
diagonally back to the top left where it starts to update the screen

again.

Interrupts are a powerful feature of the Z80 processor and must be
used with care. It is not always true that the data return for the low
byte of the vector is offh if some other device is on the back of the

146 Interrupts on the Spectrum

Spectrum. When an interrupt occurs with a Kempston joystick on
the Spectrum the data on the databus is the actual data returned
from READing the joystick. In order to overcome this problem we
could fill our vector table with an address in which the low and high
bytes are the same: 8080h 7777h 1616h.

Remember that on the interrupt the pc register will jump to the
location in the table. We could put our interrupt routine at that
address or have another jump instruction. Unfortunately, because
of hardware problems limiting the value of the i register, this
method is impossible on the 16k model Spectrums.

We'll now give you listings for two routines that use interrupts.
The first is a trace program that can be used to help you debug basic
programs. Every 1/50th of a second an interrupt occurs causing the
transfer of the program counter to address 38 hex. This is where the
keyboard is scanned and other 'housekeeping' tasks performed. We
can cause the interrupt transfer to point to a routine which looks at
the system variables ppc and subppc. These contain the line number
and statement number which basic is currently executing. PRisrring
the values of these variables to the screen tells the basic programmer
which statements the program is interpreting and the sequence of
execution. This provides an extremely valuable aid for mapping the
flow of the program, which in turn can greatly assist debugging.

This is not like the true trace functions found on some other
computers since we can only see what line we are executing every
1/50th of a second. Some of the faster basic statements could be
missed. The trace function is enabled by typing the instruction rand
usr32330 and disabled by typing rand usr32338. When you are running
basic and the trace function is enabled then the line you are execu¬
ting at the time of the interrupt is displayed on the top left hand side
of the screen. To slow basic down as it is executing with the trace
function press the 'q' key. This is most useful as it sometimes gets
difficult to see the line numbers being PRiNTed.

Assember Listing

ORG 32330D

{TRACE ROUTINE
{FOR 16K SPECTRUM

ZEROADD E0U 15360 {ADDRESS FOR NUMERIC DATA
PCC E6U 23621 {LINE NUMBER EXECUTED

Interrupts on the Spectrum 147

SUBPCC ESU 23623

TRDN:
LD A, 28H

LD I, A

IM 2

El
RET

TROFFi IM 1
RET

ORG 7E5CH

TRACE: DI
PUSH AF
PUSH BC

PUSH DE
PUSH HL

PUSH IX

LD HL,(PCC >

LD A, H

INC A

JR Z,SKIP

LD DE,16384

CALL CONV

INC DE

LD A,(SUBPCC)

LD H,0

LD L, A

CALL CONV2

;STATEMENT WITHIN LINE

; LOAD A WITH 28H
; AND PLACE IN THE

;I REGISTER

j SET UP INTERRUPT MODE 2

;AND ENABLE

;INTERRUPT MODE 1

;INTERRUPT ROUTINE
{STARTS HERE

{SAVE REGS

{LOAD PROGRAM POINTER

{PRINT NUMBER ON SCREEN.

{GET SUB-LINE NUMBER.
;ONE BYTE NUMBER

{AND TRANSFER TO

;HL REGISTER PAIR.

148 Interrupts on the Spectrum

SKIP:

WAIT:

PRDIGIT:

LD A, 0FBH

IN
RRA

A,(0FEH>

JR C, SKIP

CALL WAIT
CALL WAIT

POP IX
POP HL
POP DE
POP BC
POP AF
JP 0038H

LD HL, 00
LD DE, 80
LD BC, 00
LDIR
RET

PUSH DE
PUSH BC
PUSH IX
PUSH HL

LD H, 0
LD L, A

ADD HL, HL
ADD HL, HL
ADD HL, HL

;HL POINTS TO SCREEN
;ADDRESS

; A CONTAINS DIGIT

;NUMBER 0-9

iSAVE REGISTERS

;PUT CHARACTER OFFSET
;IN HL REGISTER

(MULTIPLY BY 8

Interrupts on the Spectrum 149

EX DE, HL

LD IX, ZEROADD POINT TO START OF
NUMERIC DATA

ADD IX, DE ADD OFFSET TO START OF
NUMBER

EX DE, HL

LD B, B ;SET COUNTER

NXDATi LD A, (IX) GET NUMERICAL DATA

LD (DE), A PLACE ON SCREEN

INC D ADJUST SCREEN ADDRESS

INC IX ADJUST DATA POINTER.

DJNZ NXDAT DO NEXT DATA

POP HL
POP IX
POP BC ;RESTORE REGISTERS

POP
RET

DE

DECT2:
DEFW 1000

DECT3: DEFW 100
DEFW 10

DEFW 1
CQNV2:

LD IX,DECT3

JR NDIG2

CONV: LD IX,DECT2

NDIG2: LD B, (IX+1)

LD C,(IX+0)

LD A,' 0' -1
AND A

CAR; INC A
SBC HL, BC
JR NC,CAR
ADD HL, BC
CALL PRDIGIT
INC DE
INC IX

150 Interrupts on the Spectrum

INC IX
DEC C

JR NZ, NDIG2
RET

END

Hexadecimal Listing

7E4A 3E 28 ED
7E52 ED 56 C9
7E5A 00 00 F3
7E62 E5 2A 45
7E6A 11 00 40
7E72 47 5C 26
7E7A 3E FB DB
7E82 90 7E CD

7E8A D1 Cl FI
7E92 00 11 00
7E9A B0 C9 D5
7EA2 00 6F 29
7EAA 00 3C DD
7EB2 7E 00 12
7EBA El DD El
7EC2 64 00 0A

7ECA C2 7E 18
7ED2 DD 46 01
7EDA A7 3C ED
7EE2 9C 7E 13
7EEA 20 E6 C9
7EF2 47 5C 26
7EFA 3E FB DB

47 ED 5E FB C9
00 00 00 00 00
F5 C5 D5 E5 DD
5C 7C 3C 28 ID
CD CE 7E 13 3A
00 6F CD C8 7E
FE IF 38 06 CD
90 7E DD El El

C3 38 00 21 00
00 01 00 00 ED
C5 DD E5 E5 26
29 29 EE: DD 21
19 EE: 06 08 DD
14 DD 23 10 F7
Cl D1 C9 E8 03
00 01 00 DD 21

04 DD 21 C0 7E
DD 4E 00 3E 2F
42 30 FE: 09 CD
DD 23 DD 23 0D
CD CE 7E 13 3A
00 6F CD C8 7E
FE IF 38

The second of our two interrupt driven routines allows us to have an
on-screen clock constantly telling us the time, even when we are
RUNning a basic program. After placing the machine code routine in
memory key in the basic listing below. This serves to set the time on
the clock. After RUNning, the basic program clock should be con¬
stantly updated on the top right hand side of the screen. You can
stop the clock at any time by entering new. This disables the clock by
re-setting the interrupt mode to 1, thereby causing the Z80 to

Interrupts on the Spectrum 151

branch off to 38 hex on every interrupt. To start the clock off again

simply type randomize usr32330

BASIC Listing

10 CLEAR 32325:LET T=32438
20 INPUT "HOURS";H:LET H=INT < H

):IF H<0 OR H>12 THEN GO TO 20
30 INPUT "MINS ";M:LET M=INT(M

):IF M<0 OR M>59 THEN GO TO 30
40 IF H>9 THEN LET H=H+6
50 IF li>9 THEN LET M=M+6*INT(M

/10)
60 POKE T,H:POKE T+l,M:POKE T+

2,0:RANDOMIZE USR 32330

Assembler Listing

TRON:

FRAMES:

CLOCK:

ORG 32338D

;CLOCK ROUNTINE

;FOR 16K SPECTRUM

LD A,28H j SET UP I REGISTER

LD I, A j TO PAGE 28 HEX

IM 2 j SET INTERRUPT MODE 2

El ;AND ENABLE

RET

DB 0

ORG 7E5CH {START OF INTERRUPT ROUTINE

DI {DISABLE INTERRUPTS

PUSH AF {SAVE REGISTERS ON

PUSH BC ;THE STACK.

PUSH DE

PUSH HL

PUSH IX

LD A,(FRAMES) {UPDATE 1/50 SECOND

;COUNTER.

Interrupts on the Spectrum

INC A
LD <FRAMES >, A
CP 50 ,* HAVE WE COUNTED THROUGH

;1 SEC?
JR NZ,PRCLOCK »NO, SO PRINT TIME ANYWAY.

XOR A ;SET FRAMES
LD (FRAMES), A ;TO ZERO.

LD DE,TIMLIM J GET BCD TIME LIMITS
LD HL,SECS ;POINT TO TIMER COUNTERS
LD B, 3 ;NUMBER OF COUNTERS TO

;UPDATE.

(CD: LD A, (HL) iGET TIME COUNTER
ADD A, 1 ;INCREASE BY ONE
DAA ; BCD
LD (HL), A
LD A, (DE) ;GET LIMIT
CP (HL) ;HAVE WE REACHED LIMIT FOR

{THAT TIMER?
JR NZ,PRCLOCK

SO GO AND PRINT TIME.
LD (HL), 0 1 RESET TIME COUNTER
INC DE ;POINT TO NEXT TIME LIMIT
DEC HL ;POINT TO NEXT TIME COUNTER
DJNZ NXBCD ;DO NEXT DIGIT.

THIS POINT THE HOURS ARE RESET TO ZERO.

INC HL ;POINT TO HOURS DIGIT
INC (HL) ;SET TO 1 O'CLOCK.

PRCLOCKi

;ROUTINE TO PRINT THE CLOCK ON THE SCREEN

LD HL,16384+31-8 J TOP RIGHT HAND CORNER
LD DE,HRS ; DE POINTS TO BCD DIGITS
LD B, 3 ;COUNTER

Interrupts on the Spectrum 153

NXTi LD A, (DE)
LD C, A
AND 0F0H
RRCA
RRCA
RRCA
RRCA
CALL PRDIGIT
INC HL

LD A, C
AND 0FH
CALL PRDIGIT
INC DE

INC HL
INC HL
DJNZ NXT

POP IX
POP HL
POP DE
POP BC
POP AF
JP 0038H

TIMLIM: DB 60H, 60H, 13H
HRS: DB 0
MINS: DB 0
SECS: DB 0

;GET DIGIT
;SAVE IN C REG
;GET FIRST DIGIT
;WOVE DOWN TO BITS B-3

;PRINT DIGIT.
;POINT TO NEXT PART
;OF SCREEN
;GET DIGIT
;MASK OFF BOTTOM 4 BITS,
jPRINT DIGIT
;POINT TO NEXT
;TWO BCD DIGITS.
;ONE SPACE BETWEEN DIGITS.

;DO NEXT DIGITS

;RESTORE REGISTERS

ZEROADD EQU 15744 {ADDRESS OF START OF
{NUMERIC DATA

PRDIGIT:
{HL POINTS TO SCREEN
; ADDRESS
; A CONTAINS DIGIT
{NUMBER 0-9

PUSH HL
PUSH BC

{SAVE REGISTERS

154 Interrupts on the Spectrum

NXDAT:

SLA A ;HULIPLY DIGIT BY 8
SLA A
SLA A
LD B, 0 1 GET OFFSET
LD C, A JIN BC REGISTER
LD IX,ZEROADD ;POINT TO START OF

j NUMERIC DATA
ADD IX, BC ;ADD OFFSET TO START OF

{NUMBER

LD B, 8 j SET COUNTER

LD A, (IX) ;GET NUMERICAL DATA
LD (HL), A {PLACE ON SCREEN
INC H {ADJUST SCREEN ADDRESS
INC IX {ADJUST DATA POINTER,
DJNZ NXDAT {DO NEXT DATA

POP BC {RESTORE REGISTERS
POP
RET

END

HL

Hexadecimal Listing

7E4A 3E 28 ED 47 ED 5E FB C?
7E52 00 00 00 00 00 00 00 00
7E5A 00 00 F3 F5 C5 D5 E5 DD
7E62 E5 3A 52 7E 3C 32 52 7E
7E6A FE 32 20 ID AF 32 52 7E
7E72 11 83 7E 21 88 7E 06 03
7E7A 7E C6 01 27 77 1A BE 20
7E82 08 36 00 13 2B 10 FI 23

7E8A 34 21 17 40 11 B6 7E 06
7E92 03 1A 4F E6 F0 0F 0F 0F
7E9A 0F CD B9 7E 23 79 E6 0F
7EA2 CD B9 7E 13 23 23 10 E9
7EAA DD El El D1 Cl FI C3 38
7EB2 00 60 60 13 00 00 00 E5
7EBA C5 CB 27 CB 27 CB 27 06
7EC2 00 4F DD 21 80 3D DD 09

Interrupts on the Spectrum 155

7ECA 06 08 DD 7E 00 77 24 DD
7ED2 23 10 F7 Cl El C9 00 00
7EDA 00 00 F3 F5 C5 D5 E5 DD
7EE2 E5 3A 52 7E 3C 32 52 7E
7EEA FE 32 20 ID AF 32 52 7E
7EF2 11 B3 7E 21 B8 7E 06 03
7EFA 7E C6 01 27 77 1A

12 Machine code
miscellany

In this final chapter, I present a complete machine code game and a
variety of routines. You can use these to enhance you r basic programs
or incorporate into your own machine code programs. The tech¬
niques we've seen in the course of the book are all represented here.
Study of the programs should help you in writing your own and will
increase your repertoire of routines and your program library.

BRICKOUT

This version of a venerable arcade game is one of my favourite
programs. There is no better way to become proficient in machine
code than by writing games. The object of this game is to knock three
layers of 32 bricks away from the top part of the screen. The player
controls a bat and directs a ball moving along the screen to knock
down the coloured bricks. If the ball passes the bat then the player
loses a life. The game ends when the player loses all his lives. The
game listing has been broken into sections and heavily annotated to
help you see the structure of the program.

The bat is controlled by the <z> and <x> keys which make it move
left or right respectively. The <capsshift> key can be used to make
the bat go twice as fast, (a 'Cheat Key' if you like!). The game program
comes in two parts. One is in basic and the other in machine code. To
start the game after entering the code you run the basic program
which calls the machine code routine. When the player has lost the
score is printed on the return to basic as the variable sc and the user is
asked if he wants another game. Here's the basic program:

10 PRINT #0;"press a key when
ready"

20 IF INKEY$="" THEN 60 TO 20
30 CLS
40 RANDOMIZE USR 30000
45 PLOT 0,175: DRAW 255,0: PLO

T 0,0: DRAW 0,175
50 60 TO 10

Machine code miscellany 157

The machine code routine comes in three main sections. The first
initializes the score, the number of bricks left, the number of balls
left and draws the screen. The second routine, movbat, moves the
user's bat, controlled by the <z>, <x> and <caps shift> keys. The
last routine, muball, deals with moving the ball around the screen,
knocking out bricks, rebounding off the bat and walls, and updating
the score. We'll break down the assembler listing, and give the
whole hexadecimal listing at the end.

To start off the game we jump into the portion of code labelled
start. This follows the initialisation:

ORG 32000
JP START

BATYX: DEFW 160FH
BALLX: DB 10H
BALLY: DB 01H
TPBLYX:

DEFW 0
XINC: DB 1
YINC: DB 1
LEVEL: DB 4

SCORE: DEFW 0
BALLS: DB 0
HITS: OB 0

PATTBL:

SPACE: DB 0, 0, 0, 0, 0, 0,

;DATA FOR BALL

BALLCH: DB 3CH,7EH,0FFh

BATS POSITION
BALLS X POSITION
BALLS Y POSITION

TEMP AREA
X MOVEMENT
Y MOVEMENT
LEVEL
NUMBER OF HALTS FOR DELAY
SCORE
NUMBER OF BALLS
NUMBER OF BRICKS HIT

I, 0FFH, 8FFH, 0FFH, 7EH, 3CH

158 Machine code miscellany

;DATA FOR BAT

BATCHSj DB 3FH, 7FH, 0FFH(0FFH, 0FFH, 0FFH, 7FH, 3FH
DB 0FFH,0FFH, 0FFH, 0FFH, 0FFH, 0FFH, 0FFH, 0FFH
DB 0FCH, 0FEH, 0FFH, 0FFH, 0FFH, 0FFH, 0FEH, 0FCH

;DATA FOR BRICK

BRICKl! DB 0FFH,81H, 81H, 81H, 81H, 81H, 81H, 0FFH

START:
LD A, 2
CALL 1601H jOPEN CHANNEL TWO
XOR A ;SET A REGISTER TO ZERO
OUT (0FEH), A ;SET BORDER TO BLACK

LD HL, 0 ;RE-SET SCORE TO 0
LD <SCORE), HL
LD A, 5
LD (BALLS>, A ;SET NUMBER OF BALLS TO 5
LD A, A
LD (LEVEL>, A
LD A, 96 iNUMBER OF BRICKS
LD (HITS), A ;PLACE IN HITS
CALL SETUP ;SET UP BRICKS ON SCREEN
CALL RNDBAL ;PLACE THE BALL ON THE

;SOMEWHERE ON THE SCREEN
LD HL,1610H ;INTIALIZE BATS X, Y CO-ORDS
LD (BATYX), HL
CALL PRTBAT jAND PRINT THE BAT

BATAGN:
LD A, (BALLS) J LOOK AT THE NUMBER

AND A
;OF BALLS LEFT
;IS IT ZERO?

JR Z,GMOVER ;IF IT IS GO TO

;WE ARE STILL PLAYING
)DEAL WITH END OF GAME

CALL MOVBAT ;MOVE BAT
CALL MUBALL ;MOVE BALL

Machine code miscellany 159

El
HALT
DI
JR BATAGN

GMOVER:
LD BC, (SCORE)

El
RET

;WAIT FOR 1/50 OF A SECOND

; KEEP PLAYING

PASS SCORE TO
BC REGISTER PAIR
ENABLE INTERRUPTS
AND RETURN TO BASIC

The games ends when there are no balls left, which causes the
routine to jump to the label gmover. This gets the current score and
places it into the bc register pair to be passed back to basic.

movbat is used to control the movement of the bat according to
the keys <z> or <x> being pressed. If the user presses the key
ccaps shift> then the routine goes back to the label five,9@ to move
the bat again.

A call is made to either righttb or lefttb to move the bat right or
left. After this the routine returns to move the ball.

MOVBAT:
;MOVE PLAYERS BAT

CALL PRTBAT ;PRINT BAT

LD A,0FEH ;SET UP TO SCAN BOTTOM

IN A,< 0FEH) ;LEFT HAND SIDE OF KEYBOARl

AND 1FH j MASK OFF LOWER FOUR BITS

CP 1FH ;SEE IF ALL BITS ARE SET

RET Z iNO KEY PRESSED SO RETURN

CALL CLRBAT ;CLEAR BAT OFF SCREEN

FIVE90:

BIT lj A ; IF PRESSED ‘T

CALL 1, LEFTB ;THEN MOVE LEFT

BIT 2, A i IF PRESSED 'X'

CALL Z, RIGHTS ;THEN MOVE RIGHT

BIT 0, A jHAVE WE PRESSED SHIFT

JR NZ,BATPRT ;KEY7IF NOT JUST PRINT BAT

SET 0, A
JR FIVE90 ;TURN OFF SHIFT KEY

jHAVE ONE MORE GO

160 Machine code miscellany

BATPRT;

CALL PRTBAT jPRINT BAT ON SCREEN
RET jAND RETURN

When moving the ball left or right a check must be made to make
sure that the bat does not go off the screen. The variable batxy holds
the x,y co-ordinate of the left hand side of the bat. The bat is made
up of three characters.

RIGHTS:
PUSH AF

LD HL,(BATYX)

LD A, 1DH
CP L

JR Z,REDGE
INC L
LD (BATYX), HL

REDGE:
POP AF
RET

LEFTS:
PUSH AF
LD HL,(BATYX)
LD A, L
AND A
JR Z, LEDGE
DEC L
LD (BATYX), HL

LEDGE:
POP AF
RET

j GOING RIGHT, SAVE AF PAIR

;GET X,Y C0-0RD OF BAT
JIN HL PAIR
iLOAD A REGISTER WITH 29
;TEST TO SEE IF WE HAVE
;HIT THE RIGHT SIDE
J HIT, SO DON'T UPDATE
1INCREASE X CQ-ORD
;AND SAVE

;RESTORE KEY STATUS
;AND RETURN

j GOING LEFT,SAVE KEY STATUS
;GET X, Y C0-0RDS
f TEST IF HIT LEFT HAND SIDE
;IE IF EQUAL TO 0
;HIT SO DON'T UPDATE
;DECREASE ONE OFF X C0-0RD
;AND SAVE

;RESTORE KEY STATUS
;AND RETURN

The routine clrbat is used to remove the bat from the screen. To do
this we print the character space which consists of zeros. While the
routine prtbat is used to print the bat to the screen. Both these
routines call the routine prtch which prints the character held in the
a register. In this routine a call is made to two rom routines. The
routine at 0E9E hex calculates the screen address for a given y co¬
ordinate. The routine at the address 0E88 hex calculates the attribute
in the de register pair for a given screen address.

Machine code miscellany 161

CLRBATi
PUSH AF SAVE AF REGISTER
LD HL, (BATYX) GET X, Y CO-ORD

CLRIT:

LD BC,338H SET INK AND PAPER
WHITE PAPER BLACK INK
B REGISTER IS
LOADED WITH 3

PUSH BC SAVE CHAR CODE
PUSH HL SAVE X, Y CO-ORD AND

COUNTER
XOR A SET A TO ZERO
CALL PRTCH PRINT SPACE
POP HL RESTORE X,Y
INC L POINT TO NEXT CHAR OF BAT
POP BC RESTORE X, Y CO-ORD

AND COUNTER
DJNZ CLRIT RUB OFF 3 CHARACTERS
POP
RET

AF RESTORE AF REGISTER

PRTBAT:
LD HL,(BATYX) ;GET X, Y CO-ORD
LD BC, 339H i

i

1 SET B=3 AND COLOUR TO
1 WHITE PAPER AND RED INK

LD A, 2 1
j
1INTIALIZE A REG TO FIRST
;CHARACTER OF BAT

NEXBAT:
PUSH BC SAVE COLOUR AND COUNTER
PUSH HL SAVE X, Y CO-ORD
CALL PRTCH PRINT PART OF BAT

INC A NEXT PART OF BAT
POP HL RESTORE X,Y
INC L NEXT X POSTION OF BAT
POP BC RESTORE COUNTER AND COLOUR
DJNZ
RET

NEXBAT DO 3 TIMES
AND RETURN

PRINTCHAR:
;H=Y L=X A=CHAR NUMBER C=C0L0UR

162 Machine code miscellany

PRTCH:

PUSH
PUSH
PUSH

PUSH
PUSH
PUSH

LD

CALL
POP
LD
ADD
EX

POP
LD
LD
LD

ADD
ADD
ADD
ADD

LD

NXTROU:LD
LD
INC

INC

DJNZ

EX

CALL

POP

AF
BC
HL

BC
AF
HL

A, H
0E9EH

DE
D, 0

HL, DE
DE, HL

AF
BC,PATTBL
H, 0

L, A

HL, HL
HL, HL
HL, HL
HL, BC

B, 8

;SAVE CHARACTER
; SAVE COLOUR

J SAVE X, Y CO-ORDS

;SAVE COLOUR
;SAVE CHARACTER
;SAVE X, Y CO-ORDS

; LOAD A WITH Y CO-ORD
;CALCULATE SCREEN ADDRESS
;PLACE X CO-ORD IN E REG
;PLACE 0 IN D
; FIND SCREEN ADDRESS
;AND PLACE IN DE
;GET CHARACTER CODE
;BC POINTS TO CHARACTER SET
;LOAD H WITH 0
,* LOAD A WITH CHARACTER
;NUMBER
; TIMES BY 2

;TIMES BY A
;TIMES BY 8
;AOD CHARACTER
;TABLE ADDRESS
;HL NOW POINTS
j TO CHARACTER DATA

; LOAD B WITH DATA COUNT

A, (HL)
(DE), A
HL

D

NXTROW

DE, HL

0E88H

BC

GET CHARACTER DATA
AND PLACE ON SCREEN
POINT TO NEXT CHARACTER
DATA

POINT TO NEXT PIXEL
LINE ON THE SCREEN
DO THIS UNTILL
WE HAVE FINISHED
PRINTING THE CHARACTER
LET HL NOW BE
THE SCREEN ADDRESS
CALCULATE THE
ATTRIBUTE ADDRESS
RESTORE COLOUR CODE

Machine code miscellany 163

LD A, C ;PLACE IN A REGISTER

LD (DE), A j SET ATTRIBUTE

POP HL j RESTORE X, Y CO-ORD

POP BC .■RESTORE COLOUR CODE

POP AF .•RESTORE CHARACTER

RET ;RETURN FROM PRINTING

The routine setup is called only once: at the start of each new game.
It is used to draw the bricks on the screen.

j SET START SCREEN

SETUP:
CALL 0D66H
LD BC,2020H

LD A. 5

LD HL, 300H
CALL NXCOL

LD BC,2018H
LD HL,400H
CALL NXCOL

LD BC,2030H

LD HL,500H

NXCOL:
CALL PRTCH

INC L
DJNZ NXCOL

RET

;CLEAR SCREEN
;32 GREEN BRICKS
;PLACE BRICK CHAR IN A REG
;START X, Y CO-ORD OF BRICKS
j DRAW BRICKS

iCOLOUR =18H MAGENTA
;Y=4 4 X=0
;DRAW BRICKS

;COLOUR =30H YELLOW
;Y=5,X=0

;PRINT BRICK
;POINT TO NEXT X CO-ORD
;REPEAT 32 TIMES

;RETURN

peek is the routine which is used to detect any collision between the
ball and any bricks or the bat. The x and y co-ordinates are placed in
the hl pair and after CALLing this routine the attribute or colour code
is RETURNed in the A register.

164 Machine code miscellany

PEEK!

RETURNS ATTRIBUTE
OF GIVEN X, Y (IN HL PAIR)
IN A REGISTER

LD A, L jPLACE X CO-ORD
;IN A REGISTER

LD L, H ;PLACE Y CO-ORD
;IN L REGISTER

LD H, 0 ;32 BIT NUMBER SO
/ PLACE 0 IN H

ADD HL, HL ;TIMES BY 2
ADD HL, HL /TIMES BY 4
ADD HL, HL /TIMES BY 8
ADD HL, HL /TIMES BY 16
ADD HL, HL /TIMES BY 32
LD B, 0 /LOAD B REG WITH 0
LD C, A /PLACE X CO-ORD IN C REGISTER
ADD HL, BC /FIND OFFSET
LD BC,5800H
ADD HL, BC /CALCULATE ATTRIBUTE

j ADDRESS
LD A, (HL) {GET CONTENTS OF

/THAT ADDRESS AND PLACE
/IN A REGISTER

RET ;RETURN

brkout deals with the ball colliding with an object. It determines
which coloured brick (if any) it has hit and gives an appropriate
score. When the ball hits a brick the variable hits is deducted by one
to keep a count of the number of bricks still left standing. It
branches off to noend if any are still left.

If all the bricks are knocked down then the routine will reset the
number of bricks by LOADing the variable hits with 96 (i.e. three rows
of 32 bricks). The player is rewarded by a bonus of two balls and the
variable level is decreased. This controls the delay when moving the
ball, thus increasing its speed for the next game.

BRKOUT:

;BRICK HAS HIT SOMETHING DO A TEST

LD
CP
JR

BC, 0
30H
NZ,NTYLW

/HAVE WE HIT A YELLOW BRICK
;NOT YELLOW

Machine code miscellany 165

LD A, -1
LD (YINC), A
LD BC, 2
JR BEEP

NTYLW:
CP 18H

JR NZ, NTMAGN
LD A, -1

LD (YINC), A
LD BC, 5
JR BEEP

NTMAGN:
CP 20H
JR NZ, ERROR
LD BC, 10
JR BEEP

ERROR:
LD DE, 40H
LD HL, 666H
CALL 3B5H

BEEP:
LD HL, (SCORE)

ADD HL, BC
LD < SCORE),HL

LD HL, HITS

DEC < HL)
JR NZ, NOEND

LD < HL), 96
LD A,(LEVEL)
AND A
JR Z, MAXLEV

DEC A
LD (LEVEL), A
LD A,(BALLS)
ADD A, 2
LD < BALLS), A

;SEND BALL IN OTHER DIRECTION

;ADD TO SCORE
;AND NAKE A NOISE ABOUT IT!

;HAVE WE HIT A
j NAGENTA BRICK?
j NOT MAGENTA
;SEND BALL IN
;OTHER DIRECTION

;SCORE
; AND MAKE A SOUND

HAVE WE HIT A GREEN BRICK?
GOD KNOWS WHAT WE HIT!
GIVE HIM A BIG SCORE
AND MAKE A NOISE!

;MAKE A LONGER BEEP!

GET SCORE
AND ADD 0,5 OR 16
SAVE UPDATED SCORE
POINT TO NUMBER OF HITS

SUBTRACT ONE
ALL BRICKS HIT?

RESET NUMBER OF BRICKS
GET LEVEL
TEST FOR ZERO LEVEL
DO NOT BOTHER MAKING
ANY MORE DIFFICULT
ONE OFF THE LEVEL
AND SAVE
GET NUMBER OF BALLS
AND GIVE HIM TWO MORE
AND SAVE

166 Machine code miscellany

MAXLEV:
CALL RNDBAL {GET A RANDOM BALL POSTION
CALL SETUP {SET UP THE WALL

NOEND:
LD DE, 8
LD HL, 666H
CALL 3B5H {BEEP
LD A, 0 {MAKE SURE
OUT < 0FEH), A {WE HAVE A BLACK BORDER
RET

The routine muball is one of the main routines which deals with the
movement of the ball. The ball has a y direction (yinc) and x direction
(xinc). These two variables are offsets which are added to the ball's x
and y co-ordinates. These are either 1 or —1. If the ball passes the
bottom of the screen, one is deducted off the number of remaining
balls. If there is still any left then a branch is made to rndball which
sets up another ball at a random x position. If the ball collides with
an object than its x direction and/or y direction is reversed.

MUBALL:
LD HL,(BALLX) I GET BALLS X, Y CO-ORD
{BALL DOESNT GO THROUGH
{THE BAT...

LD A, (YINC) {GET Y DIRECTION
ADD A, H {ADD TO Y
LD H, A {AND SAVE NEW Y CO-ORD
LD A, (XINC) {GET X DIRECTION
ADD A, L {ADD TO CURRENT X CO-ORD
LD L, A {AND SAVE NEW X CO-ORD
PUSH HL {SAVE THIS
CALL PEEK {LOOK AT THE COLOUR

POP HL
{OF NEW X, Y

{RESTORE SCREEN ADDRESS
CP 39H JIS IT THE BAT
; HIT?
JR NZ, NTBAT {NO ITS NOT!

LD A, (YINC) {REVERSE Y DIRECTION
NEG
LD (YINC), A {AND SAVE
{SEMI REBOUND DIRN.

Machine code miscellany 167

NTBAT:

NGXINC:

YCHECK:

LD
NEG

A,(XINC) .'REVERSE X DIRECTION

ADD A, L ;ADD X CO-ORD
LD L, A jAND SAVE IN L
CALL PEEK ;LOOK AT COLOURS HERE
CP 38H ;IS IT NORMAL BACKGROUND
JR NZ, MUBALL iNO, THEN MOVE BALL

; SEND BALL BACK THE HAY IT CAME ...

LD A,(BALLX) ;GET X CO-ORD
AND A ;TEST FOR LEFT HAND SIDE
JR Z, MUBALL ; NO THEN MOVE BALL
LD A,(XINC)
NEG ;REVERSE X DIRECTION
LD (XINC), A ;AND SAVE
JR MUBALL ;MOVE THE BALL

LD HL,(BALLX) GET X, Y CO-ORD

LD A, (XINC) GET X DIRECTION
ADD A, L GET NEW X CO-ORD
LD L, A AND SAVE IN L REG
LD (TPBLYX), A PLACE NEW X CO-ORD IN TEMP
AND A IS IT AT THE

JR Z.NGXINC
LEFT HAND SIDE?
YES THEN GO TO

CP 1FH
CHANGE X DIRECTION
IS IT ON THE

JR C,YCHECK

RIGHT HAND SIDE?

NO SO CHECK Y MOVEMENT

LD A, (XINC) GET X DIRECTION

NEG
LD (XINC), A

REVERSE X DIRECTION

AND SAVE

LD A, (YINC) ;GET Y DIRECTION

ADD A, H ;GET NEW Y CO-ORD
LD H, A ;AND SAVE IN H REG
LD (TPBLYX+1), A ;AS WELL AS TEMP+1
AND A ;HAVE WE HIT THE TOP?
JR Z,NGYINC ;YES THEN CHANGE

Y DIRECTION

168 Machine code miscellany

CP 23
JR NC,BALOUT
CALL PEEK

CP 38H
JR Z, GOED
CALL BRKOUT

NGYINC:

LD A, (YINC)
NEG

LD (YINC), A
GOED:

LD A, 0
jERASE OLD
LD C, 3BH
LD HL, (BALLX)
CALL PRTCH
LD A, 1

LD HL,(TPBLYX)
LD (BALLX),HL

CALL PRTCH
LD A, (LEVEL)

LEVLP:
El
HALT
DI
DEC A

JR NZ, LEVLP
RET

BALOUT:

LD A, 0
;ERASE BALL

LD C, 38H
LD HL,(BALLX)
CALL PRTCH
CALL RNDBAL
LD HL, BALLS
DEC (HL)
RET

HAVE WE HIT THE BOTTOM?
OUT OF BOUNDS
NO,LOOK AT WHERE
WE ARE GOING TO.
IS IT BLANK?
YES, CARRY ON
HIT SOMETHING SO CHECK!

GET Y DIRECTION
CHANGE DIRETCIQN
AND SAVE

SET UP CHARACTER AS SPACE

SET UP BACKGROUND COLOUR
GET BALLS X, Y CO-ORDS
AND BLANK OUT
GET BALL CHARACTER
GET TEMP X, Y
AND SAVE IN BALLS
X,Y CO-ORDS
PRINT THE BALL!
GET LEVEL

J1/50 OF A SECOND DELAY

;DELAY DEPENDENT ON LEVEL

;SET UP CHARACTER AS SPACE
;BACKGROUND COLOUR

1 GET X, Y CO-ORDS
;AND PRINT

;GET RANDOM X, Y CO-ORD
iONE OFF NUMBER OF BALLS

1 RANDOM X-POSN FOR BALL

Machine code miscellany 169

RNDBAL:

DLDOP;

LD A,< 23672)
;LSB OF FRAMES
SRL A
AND 0FH
ADD A, 5
LD < BALLX), A

LD A, 6
; SET Y -POS
LD (BALLX+1), A
LD HL,(BALLX)
LD (TPBLYX), HL
LD B, 50

El
HALT
DI
DJNZ DLOOP
RET

{GET FRAMES

i 0-15
; 5-20
;SAVE RANDOM X CO-ORD
;F0R BALL
;INTIALIZE Y CO-ORD

;AND SAVE
iGET X, Y CO-ORD
;AND SAVE IN TEMP X, Y

;WAIT FOR A WHILE

END

MAZE GENERATOR

This program generates random mazes consisting of a 32 by 22 grid
of cells. It can, however, be easily adapted to produce mazes of any
desired width and height. The algorithm used generates mazes
where there is only one route from one cell to another. This routine
could be used in games to produce a maze for an adventure game
program such as the famous 'Hall of the Things' by Crystal Software.

A maze is constructed of cells and each of these cells are sur¬
rounded by up to four walls. They can be regarded as having just
two walls as the other surrounding cells provide the other two.
Diagram 1 shows how the wall would be made up on a 3 by 3 maze.
Notice that there are no walls on the top and left sides of the maze.
These we can draw later, after we have constructed the rest of the
maze.

170 Machine code miscellany

Top and left maze walls drawn later

Right wall of cell

Lower wall of cell

Hexadecimal Listing

7 D00 C3 40 7D
7D08 00 01 01
7D10 00 00 00
7D18 3C 7E FF
7D20 3F 7F FF
7D28 FF FF FF
7D30 FC FE FF
7D38 FF 81 81

7D40 3E 02 CD
7D48 21 00 00
7D50 32 0E 7D
7D58 3E 60 32
7D60 CD 5F 7F
7D68 7D CD D9
7D70 28 0B CD
7D78 FB 76 F3

0F 16 10 01 00
04 00 00 00 00
00 00 00 00 00
FF FF FF 7E 3C
FF FF FF 7F 3F
FF FF FF FF FF
FF FF FF FE FC
81 81 81 81 FF

01 16 AF D3 FE
22 0C 7D 3E 05
3E 04 32 0B 7D
0F 7D CD 1A 7E
21 10 16 a- 03
7D 3A 0E 7D A7
83 7D CD B7 7 E
18 EF ED 4B 0C

Machine code miscellany 171

7 D80 7D FB C9 CD D9 7D 3E FE
7D88 DB FE E6 IF FE IF C8 CD
7D90 C5 7D CB 4F CC B7 7D CB
7D98 57 CC A8 7D CB 47 20 04
7DA0 CB C7 18 EE CD D9 7D C9
7DA8 F5 2A 03 7D 3E ID BD 28
7DB0 04 2C 22 03 7D FI C9 F5
7DB8 2A 03 7D 7D A7 28 04 2D

7DC0 oo Am Am 03 7D FI C9 F5 2A 03
7DC8 7D 01 38 03 C5 E5 AF CD
7DD0 ED 7D El 2C Cl 10 F5 FI
7DD8 C9 2A 03 7D 01 39 03 3E
7DE0 02 C5 E5 CD ED 7D 3C El
7DE8 2C Cl 10 F5 C9 F5 C5 E5
7DF0 C5 F5 E5 7C CD 9E 0E D1
7DF8 16 00 19 EB FI 01 10 7D

7E00 26 00 6F 29 29 29 09 06
7E08 08 7E 12 23 14 10 FA EB
7E10 CD 88 0E Cl 79 12 El Cl
7E18 FI C9 CD 6B 0D 01 20 20
7E20 3E 05 21 00 03 CD 37 7E
7E28 01 18 20 21 00 04 CD 37
7E30 7E 01 30 20 21 00 05 CD
7E38 ED 7D 2C 10 FA C9 7D 6C

7E40 26 00 29 29 29 29 29 06
7E48 00 4F 09 01 00 58 09 7E
7E50 C9 01 00 00 FE 30 20 0A
7E58 3E FF 32 0A 7D 01 02 00
7E60 18 20 FE 18 20 0A 3E FF
7E68 32 0A 7D 01 05 00 18 12
7E70 FE 20 20 05 01 0A 00 18
7E78 09 11 40 00 21 66 06 CD

7E80 E:5 03 2A 0C 7D 09 22 0C
7E88 7D 21 0F 7D 35 20 1A 36
7E90 60 3A 0B 7D A7 28 0C 3D
7E98 32 0B 7D 3A 0E 7D C6 02
7EA0 32 0E 7D CD 5F 7F CD 1A
7EA8 7E 11 08 00 21 66 06 CD
7EB0 B5 03 3E 00 D3 FE C9 2A
7EB8 05 7D 3A 0A 7D 84 67 3A

172 Machine code miscellany

7EC0 09 7D 85 6F E5 CD 3E 7E
7EC8 El FE 39 20 26 3 A 0A 7D
7ED0 ED 44 32 0A 7D 3A 09 7D

7ED8 ED 44 85 6F CD 3E 7E FE

7EE0 38 20 D4 3A 05 7D A7 28
7EE8 CE 3A 09 7D ED 44 32 09
7EF0 7D 18 C4 2A 05 7D 3A 09
7EF8 7D 85 6F 32 07 7D A7 28

7F00 04 FE IF 38 08 3A 09 7D

7F08 ED 44 32 09 7D 3A 0A 7D

7F10 84 67 32 08 7D A7 28 0E
7F18 FE 17 30 31 CD 3E 7E FE
7F20 38 28 0B CD 51 7E 3A 0A
7F28 7D ED 44 32 0A 7D 3E 00

7F30 0E 38 2 A 05 7D CD ED 7D
7F38 3E 01 2A 07 7D 22 05 7D

7F40 CD ED 7D 3A 0B 7D FB 76
7F48 F3 3D 20 FA C9 3E 00 0E
7F50 38 2A 05 7D CD ED 7D CD
7F58 5F 7F 21 0E 7D 35 C9 3A
7F60 78 5C CB 3F E6 0F C6 05
7F68 32 05 7D 3E 06 32 06 7D
7F70 2A 05 7D oo

A** A— 07 7D 06 32
7F78 FB 76 F3 10 FB C9 A7 28

The theory behind the maze generator is to walk randomly round
the maze knocking down walls as we proceed. To begin we walk a
set number of steps around the maze knocking down the walls if we
meet any obstructions. On our second walk we start off in a cell that
we have not previously entered. We again walk randomly around
the maze knocking walls down. We keep on walking till we arrive at
a cell which we had visited before on 'other walks'. When we arrive
at such a cell we have then completed a path from one random walk
to another on a different random walk. This process is repeated on
all the untouched cells until we have proceeded through all the

maze.
To implement this algorithm in machine code we represent our

maze by having two arrays, the size of which are the size of the
number of cells in the maze. One is called build, the other maze. The
array build holds the path numbers and route which we 'walk' along
while the array maze holds the 'wall' patterns. A wall pattern shows
the structure of the two walls in a cell. The array maze is initialized

Machine code miscellany 173

with the two walls intact. This is represented by the two first bits of
its number being set high (i.e. the number three). Knocking down
the walls is represented by re-setting a particular bit. If bit 0 of the
number represents the bottom wall and bit 1 represents the right
hand side wall then we can see the process if we knock down a wall.
Going downwards we reset bit 0 of the cell we are in. If we knock
down a wall going up we reset bit 0 of the cell above,the cell we are
entering. Going right we re-set bit 1 of the cell we are in, going left
we re-set bit 1 of the adjacent cell.

One point we have to look out for is that we do not 'back track' on
a particular walk we are doing. We do this by giving each walk a path
number and if we do happen to back track on our original path then
we do not bother to knock down any walls. Using this method we
guarantee our maze does not have any gaping holes and that it is

singular in nature.
The program comes in two parts, one basic and one machine

code. The machine code routine generates a random maze. The
basic program draws the top and left hand side of the wall to
complete the maze. When you use the generator in a game the
unused bits in the array maze can be used to represent up to 63
objects such as axes, torches, wands or nasties! The second array is
unused once the maze is generated so it could be used to store
other variables or data in the game. The maze takes about two
seconds to generate, very slow by machine code standards, perhaps
you could set yourself the task to make it faster. One way of
improving the speed for48K Spectrum owners would be to place the
routine higher up in the memory map above the address 32768.
Moving the code here would stop the Z80 cpu 'waiting' for the
Spectrum's ULAto update the screen.

BASIC Listing

1 CLEAR 29000
10 CLS:LET SC=USR 32000
20 CLS:PRINT AT 10,10;"SCORE =

";SC
30 FOR X=1 TO 200:NEXT X
40 PRINT #0;"PRESS A KEY TO ST

ART"
50 PAUSE 0
60 GO TO 10

174 Machine code miscellany

Assembler Listing

ORG 30000
JP START

XPOS; DB 0
YPOS: DB 0
PATH: DB 0

OPENCH E0U 1601H
UDG EQU 23675

INTMAZE:
LD A, 2
CALL OPENCH
LD HL,NOUGHT

LD (UDG), HL
CALL RANDI

LD HL,MAZE
LD DE,MAZE+1
LD BC, 22*32
LD < HL), 3
LDIR

5 HL POINTS TO BUILD
J DE POINTS TO BUILD+1

LD BC, 22*32
LD (HL), 0
LDIR
XOR A
LD (XPOS), A
LD (YPOS), A
INC A
LD (PATH), A

RET

RAND0: 08 0
R'ANDl s DB 0

;UDG ADDRESS

{OPEN SCREEN CHANNEL

;SET USER DEF GRAPHICS

;TO OURS

;INTIALIZE RANDOM
;NUMBER GENERATOR

;RE-BUILD THE MAZE

; OF 22 BY 32
{WITH MALLS

;CLEAR THE ARRAY
iBUILD WITH 0

J SET THE START X CO-ORD

;SET THE START Y CO-ORD

;SET THE STARTING
jPATH NUMBER

;FINISH INTIALIZING

{RANDOM VAR 0
{RANDOM VAR 1

Machine code miscellany 175

RAND2: DB 8
RAND3: DB 0

RAND:

LD A,(RAND1)
RRCA
RRCA
RRCA
PUSH BC

PUSH AF

LD A, (RAND2)

LD B, A

LD A,(RAND3)

LD C, A

POP AF

ADD A, B

ADD A,C
RLCA
RLCA

LD < RAND0), A
LD A, B

LD (RAND1), A

LD A, C
LD (RAND2), A

LD A,< RANDS)
LD (RAND3), A
POP BC
RET

RANDI:
LD A, 0

LD < RANDS), A
LD A, 173

LD (RAND1), A

LD A, 206
LD < RAND2), A

LD A, R
LD (RAND3), A
RET

;RANDOM VAR 2
;RANDOM VAR 3

;GENERATE RANDOM NUMBER

jBETWEEN
;0 AND 255

;GET RANDOM SEED
;A MOD 8 $ 32

SAVE BC PAIR

SAVE AF PAIR

GET SECOND RANDOM VARIABLE

AND PLACE IN B REGISTER
GET THIRD RANDOM VARIABLE

AND PLACE IN C REGISTER

RESTORE AF
(RANDl)MOD 8 *32 + < RAND2)

H RAND3)
ALIGN BITS
AND SAVE NEW RANDOM
VARIABLES

;RESTORE BC PAIR

j SET UP RANDOM VARIABLES

;ENSURE SOME RANDOMNESS

176 Machine code miscellany

LENW EQU 255D

WALK:
LD B, LENW

KEW:

CALL RANDW
LD A, (HL)

AND A
JR Z,PUTIN
CP C
JR Z,PUTIN
RET

PUTIN:
LD A, (PATH)
LD (HL), A
DJNZ KEW

LD A,(PATH)
CP 1
JR NZ,WALK

RET

RANDW:

CALL RAND
AND 3

AND A

JR Z, NORTH
CP 1
JR Z,SOUTH
CP 2
JR Z, WEST

iLARGEST WALK

;KEEP WALKING

!GET CONTENTS OF
;NEW POSTION
;TEST FOR NEW LOCATION
;ZERO SO MARK PATH!
1 GOING BACK ON PATH?
;YES MARK IT!
;HAVE REACHED A VALUE LOWER

;GET PATH NUMBER
;AND PLACE IN BUILD
J DO THIS FOR LENW MAXIMUM

;ONLY DO LENW FOR PATH 1

jGET RANDOM NUMBER
1 MASK OFF FOR

1 NUMBERS 0 TO 3

i IF ZERO GO NORTH

;IF 1 GO SOUTH

;IF 2 GO WEST

;GO EAST

Machine code miscellany 177

EAST:
LD A,(XPOS)
CP 31
JR Z,RANDW

INC A

LD < XPOS >, A
LD C, < HL)
INC HL
LD A, (HL)
CP C
RET Z

DEC HL
CALL RES1
INC
RET

HL

WEST:

LD A,(XPOS)
AND A
JR Z,RANDW

DEC A

LD (XPOS >, A
LD C, (HL)

DEC HL
LD A, (HL)
CP C
RET Z

GET X CO-ORD
TEST TO SEE IF WE ARE ON
THE RIGHT HAND SIDE
IF SO GO AGAIN
ELSE INCREASE
X CO-ORD BY 1
AND SAVE
OLD VALUE IN C REGISTER
NEW POSTION
NEW VALUE
ARE THEY EQUAL?
DON'T BACKTRACK!

GET OLD POSTION
RESET BIT 1 OF OLD CELL
POINT TO NEW CELL

; GET X CO-ORD
,• TEST FOR LEFT HAND SIDE
I PICK ANOTHER DIRECTION

;GO LEFT

{SAVE X CO-ORD
{OLD VALUE

{GO LEFT
{GET NEW VALUE
j COMPARE WITH OLD VALUE
;NO BACKTRACKING

178 Machine code miscellany

RES1: PUSH HL ;SAVE NEW POSTION
LD DE, HAZE-BUILD ;POINT TO CORRESPONDING

;MAZE ADDR
ADD HL, DE
RES 1, (HL) ;KNOCK DOWN WALL
POP
RET

HL j GET NEU POSTION

NORTH:
LD A, (YPOS) j GET Y CO-ORD
AND A {ARE WE AT THE TOP?
JR Z, RANDW {YES, THEN PICK

;DIRECTION
ANOTHER

DEC A ;GOING UP
LD (YPOS), A ;SAVE NEW Y CO-ORD
LD C, < HL) ;GET OLD VALUE
LD DE,-32 {OFFSET FOR GOING UP
ADD HL, DE {POINT TO NEW PART OF

{BUILD ARRAY
LD A, (HL) {GET PATH NUMBER
CP C {COMPARE WITH OLD VALUE
RET Z {DON'T BACKTRACK!

RES0: PUSH HL {SAVE NEW POSTION
LD DE,MAZE-BUILD {POINT TO CORRESPONDING

{MAZE
ADD HL, DE
RES 0, (HL) {KNOWN DOWN WALL
POP
RET

HL {RESTORE POSTION

SOUTH:
LD A, (YPOS) {GET Y CO-ORD
CP 21 {HAVE WE HIT THE BOTTOM?
JR Z, RANDW {YES THEN PICK

{ANOTHER DIRECTION

Machine code miscellany 179

INC A GOING DOUN

LD (YPOS>, A SAVE Y CO-ORD

LD C, < HL > OLD VALUE.

LD DE,32 ;OFFSET FOR GOING DOWN

ADD HL, DE
LD A, (HL) GET NEW PATH NUMBER

CP C COMPARE WITH OLD PATH

RET Z DON'T BACKTRACK

AND A CLEAR CARRY

SBC HL, DE NORMAL SUBTRACTION

CALL RES0 KNOCK DOWN BOTTOM WALL

LD DE, 32 GET HL BACK

ADD
RET

HL, DE

PRINTC:
PUSH HL ;SAVE REGISTERS

PUSH BC

RST 010H ;PRINT A REGISTER
;TO CURRENT CHANNAL
;RESTORE REGISTERS

POP BC
POP HL
RET

DISPLAY: ;DISPLAY MAZE TO

LD HL,MAZE ;SCREEN.LOAD A WITH

LD A, 22
;NUMBER OF LINES DOWN

LINE: PUSH AF ;SAVE LINE COUNT

LD B, 32 ;GET CHARACTER COUNT

DRAWS: ;GET MAZE VALUE

LD A, (HL)
ADD A, 144 ;ADD BASE OF UDG
CALL PRINTC jPRINT CHARACTER

INC HL ;NEXT MAZE CELL

DJNZ DRAWS ;REPEAT 32 TIMES

180 Machine code miscellany

POP AF 1 RESTORE LINE NUMBER
DEC A jONE OFF LINE NUMBER
JR NZ, LINE 1 REPEAT 22 TIME
RET

BUILDM:
LD HL,BUILD ;POINT TO ARRAY BUILD

XOR A ;INTIALIZE THE X CO-ORD
LD < XPOS>, A {AND Y CO-ORD
LD (YPOS), A

FIND:

LD A, (HL) 1 GET PATH NUMBER
AND A !TEST FOR ZERO
JR Z, SKIP ;START WALKING ON ZERO
INC HL 1 NEXT ONE ACROSS
LD A,(XPOS) iUPDATE X CO-ORD
INC A
LD (XPOS), A
CP 32 !HAVE WE GONE RIGHT ACROSS?
JR NZ, FIND JNO, SO CARRY ON LOOKING
XOR A ;YES...RESET X CO-ORD
LD (XPOS >, A
LD A, < YPOS) JGO ONE DOWN
INC A
LD < YPOS), A
CP 22 {HAVE WE GONE ALL
JR NZ, FIND J THE WAY DOWN7.NO THEN KEEP
RET J LOOKING.. ELSE RETURN

SKIP:

LD A,(PATH) J GET PATH NUMBER
LD (HL), A ;PLACE AT NEW CELL
CALL WALK J DO A RANDOM WALK
LD A,(PATH) ;UPDATE.
INC A
LD (PATH), A ;NEW PATH NUMBER
JR BUILDM ;CARRY ON BUILDING

Machine code miscellany 181

STARTs
CALL INTMAZE ;CLEAR MAZE
CALL BUILDM ;BUILD MAZE
CALL DISPLAY jDISPLAY MAZE

RET

j USER DEFINE CHARACTER SET FOR MAZE

NOUGHT;
db e, 0,0,0,0,0,0> 0

DB 0, 0. 0. 0< 0, 0^ 0. 255
DB 1,1,1.1.1.1.1» 1
DB li 1» 1> li 1/1< 25%j

MAZE: DS 32*22
BUILD: DS 32*22

END

Hexadecimal Listing

7530 C3 8D 76
7538 CD 01 16

7540 5C CD 90
7548 E8 76 01
7550 B0 01 C0
7558 AF 32 33
7560 32 35 75
7568 3A 65 75

7570 3A 66 75
7578 FI 80 81
7580 78 32 65
7588 3A 64 75
7590 3E 00 32
7598 65 75 3E
75A0 5F 32 67
75A8 C0 75 7E

00 00 00 3E 02

21 97 76 22 7B
75 21 B7 76 11
C0 02 36 03 ED
02 36 00 ED B0
75 32 34 75 3C
C9 00 00 00 00
0F 0F 0F C5 F5

47 3A 67 75 4F
07 07 32 64 75
75 79 32 66 75

32 67 75 Cl C9
64 75 3E AD 32
CE 32 66 75 ED
75 C9 06 FF CD
A7 28 04 B9 28

182 Machine code miscellany

75B0 01 09 3A
75B8 3A 35 75
7500 CD 68 75
7508 FE 01 28
75D0 3A 33 75
75D8 32 33 75
75E0 2B CD F5
75E8 75 A7 28

75F0 4E 2B 7E
75F8 FD 19 OB
7600 75 A7 28
7608 4E 11 E0
7610 E5 11 40
7618 09 3A 34
7620 30 32 34
7628 19 7E B9

7630 10 76 11
7638 05 D7 01
7640 3E 16 F5
7648 CD 37 76
7650 20 F0 09
7658 33 75 32
7660 1C 23 3A
7668 75 FE 20

7670 75 3A 34
7678 FE 16 20
7680 77 CD A5
7688 32 35 75
7690 CD 53 76
7698 00 00 00
76A0 00 00 00
76A8 01 01 01

76B0 01 01 01
7 6B8 00 00 00
7600 00 00 00
7608 00 00 00
76D0 00 00 00
76D8 00 00 00
76E0 00 00 00
76E8 00 00 00

75 77 10 EF
01 20 E6 09
03 A7 28 36
FE 02 28 16
IF 28 E9 30
23 7E B9 08
23 09 3A 33
3D 32 33 75

08 E5 11 40
El 09 3A 34
3D 32 34 75
19 7E B9 08
19 OB 86 El
FE 15 28 A0
4E 11 20 00
A7 ED 52 CD

00 19 09 E5
09 21 B7 76
20 7E 06 90
10 F7 FI 3D
77 79 AF 32
75 7E A7 28
75 30 32 33
F0 AF 32 33

30 32 34 75
09 3A 35 75
3A 35 75 30
06 CD 36 75
3D 76 09 00
00 00 00 00
00 00 FF 01
01 01 01 01

01 01 FF 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

35
FE
E6
4D
FE
4E
75
D4

B9
8E
BC
FF
Ft)
75
75
08

20
El
06
23
21
34
33
20

75
El
75
18
CD
00
00
01

01
00
00
00
00
00
00
00

Machine code miscellany 183

76F0 00 00 00 00 00 00 00 00

76F8 00 00 00 00 00 00 00 00

7790 00 00 00 00 00 00 00 00

7708 00 00 00 00 00 00 00 00

7710 00 00 00 00 00 00 00 00

7718 00 00 00 00 00 00 00 00

7720 00 00 00 00 00 00 00 00

7728 00 00 00 00 00 00 00 00

LARGE PRINT

1 wrote this routine to enhance my own basic programs. The routine
prints characters on the screen twice the width of normal characters.
I have 'patched' part of the basic operating system so that the large
characters can be PRiNTed from basic and will accept all the control
characters, such as ink, paper, at, tab, etc. To enable the large print

facility we first call the routine at address 30000. This gives the
Spectrum an additional channel, channel number 5. Then, to print

large characters to the screen we simply us the basic syntax:

PRINT#5;"STRING"

Here's a sample basic program which demonstrates how the routine
can be used:

10 CLS s RANDOMIZE USR 30000
20 PRINT "This program demonst

rates"
30 PRINT "How to get "; : PRINT

#5;"Large";: PRINT " letters"
40 PRINT #5;" on the screen

II

50 PRINT
60 PRINT "It can cope with con

trol codes"
70 PRINT #5;AT 5,5;"such as AT

II

75 PRINT
80 PRINT #5; INK 5; PAPER 2;"a

nd colours"
90 PRINT #5; INVERSE 1 $ TAB 7;"

inverse"
100 PRINT #5; FLASH 1;" as well
as -Flashing"

184 Machine code miscellany

Assembler Listing

ORG 30000

CURCHL E8U 23633

REPORTJ E8U 15C4H ;INVALID I/O DEVICE
STRMS E8U 2356BD ;STREAMS
STREAM5 E8U STRMS+6+5*2

CHARS E8U 23606D
UDG E8U 23675D
CHANS E8U 23631D
CHANINF E8U STREAM5+2

POCHANGE E8U 0A80H
TVDATA E8U 23566
TVDATL E8U TVDATA
TVDATH E8U TVDATA+1
POCONT E8U 0A87H

INITP:

LD HL, CHANIND
LD DE,CHANINF
LD BC, 5
LDIR
LD HL,CHANINF
LD DE, (CHANS)
AND A
SBC HL, DE
INC HL
LD (STREAMS), HL
RET

CHANINDi
DEFW PRINTD
DEFW REPORT!
DEFB ' D'

;0PEN CHANNEL 5

;CHARS CHARACTER ADDRESS
;UDG ADDRESS
;CHANNEL ADDRESS

;CHANNEL 5

;SET UP PRINT44 COMMAND
;MOVE CHANNEL INFORMATION

;FIND DISTANCE BETWEEN CHAN

;SET UP STREAMS

iPRINT OUT ROUTINE
jINPUT ROUTINE.

Machine code miscellany 185

PRINTDi
;WHEN BASIC CALLS THIS ROUTINE THE
;A REG CONTAINS CHAR NUMBER.

CP 20H ;TEST TO SEE IF PRINTABLE

JP NC, CAR jPRINT THE CHARACTER

CALL 0B03H { GET CURRENT PRINT POSTION

CP 06 j PRINT '?'

JP C,0A69H

j FOR CODES 00- 05 HEX

CP 18H ;AND 18H TO 1FH

JP NC, 0A69H

CP 16

JP C,09F4H+16D ;GO TO ROMS TABLE.

LD HL,ATTAB {ASSUME CONTROL CHAR

CP 22

;IS AT OR TAB

JR NC,RIGHT {YOU WHERE RIGHT!

LD HL, INKGVER

RIGHT:
PUSH HL {RETURN ADDRESS IS PUSHED

JP 0B03H {FETCH CURRENT CHARACTER

PQTV2D:
LD DE,POCONTD {SAVE FIRST OPERAND

;IN TVDATH

LD (TVDATH), A

JP POCHANGE {CHANGE ADDRESS OF
{CURRENT CHANNEL

ATTAB:
LD DE,P0TV2D {NEXT TIME ROUND GOTO POTVD

JR POTV1D {SAVE CHARACTER CODE
{IN TVDATAL

INKOVER:
LD DE,POCONTD {NEXT TIME POCONTD

POTV1D: LD < TVDATL), A {SAVE CONTROL CODE

JP POCHANGE {CHANGE OUTPUT ADDRESS

186 Machine code miscellany

POCONTD:

LD
JP

DE, PRINTD
POCONT+3

;B0TH OPERANDS ARE
;COLLECTED
;NEXT TINE PRINTD
;DEAL WITH OP AND CONT CODE

CAR!

GETD:

LD DE, (CHARS) ;GET CHARACTER ADDRESS

LD H, 0 ;GET CHARACTER CODE IN 1
LD L, A
ADD HL, HL ;*2
ADD HL, HL ;*4
ADD HL, HL ;*8
ADD HL, DE ;HL POINTS TO START OF

j CHAR DATA
EX DE, HL ;NOW DE DOES!

LD HL, DUGD
PUSH HL

POP IX iEX HL WITH IX REG
LD 8,8 ;DATA COUNT

LD A, (DE) ;GET DATA

FECTHD GET DOUBLE WORD IN HL

PUSH BC ;SAVE DATA COUNT
CALL FETD
POP BC jRESTORE DATA COUNT

LD (IX+0), L ;PLACE IN UDG AREA
LD (IX+8), H
INC IX iNEXT BYTE IN UDG
INC DE ;NEXT CHAR DATA
DJNZ GETD ;DO THIS EIGHT TIMES
LD HL, (UDG) ;SAVE REAL UDG ADDRESS
PUSH HL
LD HL,DUGD ;GET DUMMY UDG ADDRESS
LD (UDG), HL ; AND CHANGE UDG
LD A, 145 ;NOW PRINT USER DEFINED

;GRAPHICS

Machine code miscellany 187

CALL 09F4H
LD A, 144 ;N0W PRINT USER DEFINED

CALL 09F4H
;GRAPHICS

POP HL ;RESTORE UDG
LD (UDG), HL
RET

FETD:
CALL NYBBLE ;D0 ONE NYBBLE
LD L, H

;NOW GET NEXT NYBBLE
NYBBLE:

LD B, 4 ; NUMBER OF BITS
NBIT: RRCA

iTRY CHANGING ABOVE OPCODE TO RLCA!!! FOR A BIT OF FUN

RR C ;MAKE TWICE AS FAT
SRA C
DJNZ NBIT ;DO 8 TIMES
LD H, C
RET

DUGD: DS 8*2

END

Hexadecimal Listing

7530 2.1 4A 75 11 O'? 5C 01 05
7538 00 ED B0 21 22 5C ED 5B
7540 4F 5C A7 ED 52 23 n n 20
7548 5C C9 4F 75 C4 15 44 FE
7550 20 D2 91 75 CD 03 0B FE
7558 06 DA 69 0A FE 18 D2 69
7560 0A FE 10 DA 04 0A 21 7D
7568 75 FE 16 30 03 21 82 75

188 Machine code miscellany

7570 E5 C3 03 0B 11 8B 75 32
7578 0F 5C C3 80 0A 11 74
7580 18 03 11 8B 75 32 0E 5C
7588 C3 80 0A 11 4F 75 C3 8A
7590 0A ED SB 36 5C 26 00 6F
7598 29 29 29 19 EB 21 DE 75
75A0 E5 DD El 06 08 1A C5 CD
75A8 CF 75 Cl DD 75 00 DD 74

75B0 08 DD 23 13 10 EF 2 A 7B
75B8 5C E5 21 DE 75 A- A.. 7B 5C
75C0 3E 91 CD F4 09 3E 90 CD
75C8 F4 09 El oo

A*. 7B 5C C9 CD
75D0 D3 75 6C 06 04 0F CB 19
75D8 CB 29 10 F9 61 C9 00 00
75E0 00 00 00 00 00 00 00 00
75E8 00 00 00 00 00 00 82 75

75F0 E5 C3 03 0B 11 8B 75 32
75F8 0F 5C C3 80 0A 11 74 75

PIXEL SCROLL

This routine allows the user to scroll any portion of the screen to
either left or right. It has a 'wrap-around' effect, and so could be
most useful when writing arcade games with scrolling background
scenery of mountains, high rise flats or the like. When calling the
routine the hl register pair must point to the screen address of the
position from which you wish to scroll. The program below is a
demonstration program showing how the routine can be used from
basic:

5 FOR X=1 TO 32*22:PRINT CHR$
143;:NEXT X

10 PRINT AT 0,0;"THIS SCROLL W
ILL GO LEFT"

20 PRINT "WITH THIS LINE!!"
30 PRINT AT 8,0;"THIS SCROLL W

ILL GO RIGHT"
40 PRINT "ALONG WITH THIS LINE

1 I M

50 RANDOMIZE USR 32000
60 GO TO 50

Machine code miscellany 189

Here are the listings for the scroll routine:

Assembler Listing

ORG 32000D

NLINES E8U 16 {NUMBER OF LINES TO SCROLL

NBYTES E8U 32 {NUMBER OF BYTES TO SCROLL

ADD E8U 16384 {SCREEN ADDRESS

ADD2 E8U 16384+256*8 {SCREEN ADDRESS2

JP TEST {TEST THE SCROLL

{These two routines SLEFT SCROLL LEFT

; and SRIGHT SCROLL RIGHT scroll the screen
{left and right respectivly. They use the rout-
j-ine INCY which finds address of corresponding

j pixel line addresses.
;0n entry to the routine HL points to the top
; left hand side of the portion of the screen

{to be scrolled.
{The other values which the program will give are
jNBYTES nunber of bytes to scroll ie width
{NLINES nunber of lines to scroll
{Both rountines have a wrap-around effect.

SLEFT:
LD HL,ADD+NBYTES- ■1

LD C,NLINES

{POINT TO RIGHT HAND SIDE
{NUMBER OF LINES TO SCROLL

PUSH HL {SAVE SCREEN ADDRESS

LD B,NBYTES {NUMBER OF BYTES TO SCROLL
{ACROSS

CHARX:
RL (HL) {SCROLL LEFT THROUGH

DEC HL iCARRY

DJNZ CHARX {REPEAT NBYTES TIMES

POP HL {RESTORE RIGHT HAND
{SIDE ADDRESS

LD A, 0 {SET A TO ZERO

190 Machine code miscellany

ADC A, A
OR (HL)
LD (HL), A
CALL INCY

DEC C
JR NZ, LINE
RET

SRIGHTi
LD HL,ADD2

LD C,NLINES
LINER: PUSH HL

LD B,NBYTES

CHARR:
RR (HL)
INC HL
DJNZ CHARR

POP HL
LD A, 0

RRA
OR < HL)
LD (HL), A
CALL INCY
DEC C
JR NZ,LINER
RET

INCY:

INC H
LD A, H
AND 7
RET NZ

LD A, L

; PLACE CARRY IN BIT 0 OF
;RIGHT HAND SIDE

;GET ADDRESS OF NEXT PIXEL
; LINE
;DOWN, ONE LESS LINE
;REPEAT UNTIL DONE ALL LINES

jPOINT TO LEFT HAND
;OF SCREEN
iNUMBER OF LINES TO SCROLL
1 SAVE LEFT HAND

;SIDE ADDRESS

;NUMBER OF BYTES TO SCROLL

SCROLL RIGHT THROUGH CARRY
TO THE RIGHT
REPEAT UNTIL DONE
NBYTES TIMES
RESTORE LEFT HAND SIDE
ROTATE CARRY INTO LEFT
HAND SIDE

;NEXT PIXEL LINE DOWN
1 ONE LESS PIXEL LINE
jREPEAT UNTIL NO MORE LINES

;NEXT PIXEL LINE DOWN
;HL POINTS TO SCREEN
;ADDRESS
;NEXT LINE DOWN
;TEST IF WITHIN CHARACTER

;WITHIN CHAR SO RETURN

;NEXT CHARACTER DOWN

Machine code miscellany 191

ADD A, 20H
LD L, A
RET C

LD A, H
SUB 8
LD H, A

RET

TEST:
CALL SLEPT
CALL SRIGHT

RET

END

Hexadecimal Listing

7D00 C3 46 7D
7D08 E5 06 20
7D10 El 3E 00
7D18 7D 0D 20
7D20 0E 10 E5
7D28 10 FE: El
7D30 CD 37 7D
7D38 7C E6 07

7D40 D8 7C D6
7D48 7D CD ID
7D50 00 00 00
7D58 00 00 00
7D60 00 00 00
7D68 00 00 00
7D70 00 00 00
7D78 00 00 00

;DO NOT ADJUST SECTOR SINCE
; WE HAVE GONE OVER

;WITHIN SECTOR SO
;RE-ADJUST

;SCROLL LEFT
;SCROLL RIGHT

IF 40 0E 10
16 2B 10 FB
B6 77 CD 37
C9 21 00 48
20 CB IE 23
00 IF B6 77
20 EC C9 24
7D C6 20 6F

67 C9 CD 03
C9 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

21
CB
8F
EC
86
3E
0D
C0

08
7D
00
00
00
00
00
00

AUTO LINE NUMBER

This routine produces line numbers automatically when the user is
typing in a basic program. Like the Clock and Trace programs given

192 Machine code miscellany

In Chapter 11, this uses interrupts. The routine loads the ascii line
number into the system variable last-k every 1/50th of a second. This
causes the line number to be placed in the edit area and lower
screen of the Spectrum. To enable the auto line facility, key in the
instruction rand usr 32333. To turn off the auto line first delete the line
number currently being edited and then enter randusr3233@.

Don't forget to clear memory to keep the machine code safe.
clear32329 is suitable for this.

Assembler Listing

ORG 32330D

ECHOE E8U 23682

LASTK EBU 23560

FLAGS E0U 23611

EPCC EBU 23625

PPC EQU 23621

DISINT:
IM 1
RET

ENABLE;
XOR A
LD (STATE), A

LD A, 28H

LD Ii A
IM 2

El
RET

ORG 7E5CH

CALL 38H

DI
PUSH AF
PUSH BC
PUSH DE
PUSH HL
PUSH IX

j COL NUMBER AND ROW NUMBER
;LAST KEY TO BE PRESSED
iKEYBOARD FLAGS
;CURRENT LINE NUMBER
;CURRENT LINE EXECUTING

;ENABLE DEFAULT INTERRUPTS

j SET A TO ZERO
;NOT OUTPUTTING ASCII CHARS
;SET I REG TO PAGE 2BH

;AND ENABLE INTERRUPT MODE 2

;START OF INTERRUPT ROUTINE

;SCAN KEYBOARD FIRST
;DISABLE INTERRUPTS FIRST
I SAVE REGISTERS

Machine code miscellany 193

jARRIVE

FIRST!

DHL:

LD A, (STATE)

AND A

JR NZ, DML

LD A,(PPC+1)

CP 255

JR NZ,BYE

LD A, (ECHOE)
CP 20H
JR NZ,BYE

LD A,(ECHOE+1)

CP 17H

JR NZ,BYE

HERE IF ME ARE AT T

LD A, (LASTK)

CP 0DH

JR NZ, BYE

LO A, 4

LD (STATE), A

LD HL,DECTL
LD (CDATA), HL

LD HL, (EPCC)
LD DE, 000AH

ADD HL, DE

LD (LINE), HL

LD A, (STATE)

DEC A

LD (STATE), A
LD HL,(LINE)
CALL CONV

;GET STATE

;TEST FOR ZERO
;ALL READY DOING A LINE

jARE ME EXECUTING A LINE?

;YES SO EXIT FROM ROUTINE

;GET LASTK
;IF NOT RETURN
; THEN EXIT FROM ROUTINE

;SET UP NO OF CHARS
;TO PRINT

jSTART OF TABLE

jGET CURRENT LINE NO
; GET STEP NUMBER
; GET NEXT LINE NUMBER
;AND SAVE

;GET STATE

;ONE LESS CHAR
j TO PRINT
jGET LINE NUMBER
!OUTPUT ASCII TO LASTK

;ARE WE AT BOTTOM OF SCREEN

BOTTOM OF THE SCREEN

194 Machine code miscellany

BYE!
POP IX
POP HL
POP D£
POP BC
POP AF
El
RET

DECTL: DEFW 1000D
DECTX: DEFW 100D

DEFW 10D
DEFW ID

CONV: LD IX, (CDATA)
NDIGIT: LD C,(IX+8>

LD B,(IX+1)
LD A, '0'-1
AND A

FIDIG: INC A
SBC HL, BC
JR NC, FIDIG
ADD HL, BC
LD (LINE), HL

CALL 0UTP2

INC IX
INC IX
PUSH IX

POP HL
LD (CDATA), HL
RET

0UTP2:
LD (LASTK), A
LD HL, FLAGS
SET 5, (HL)
RET

;RESTORE REGS

;START OF TABLE

;GET CURRENT TABLE POINTER
;GET LOW BYTE OF MULTIPLES
; OF TENS
; GET HIGH BYTE OF MULTIPLE
;SET UP A REG WITH 30 HEX
;RESET CARRY
;ADD 1 TO A REGISTER
;UNTIL WE GET A CARRY

jCORRECT NUMBER IN HL
;AND SAVE IT!

;OUTPUT ASCII CHAR IN A
; REGISTER
jPOINT TO NEXT MULTIPLE

;TRANSFER IX TO HL

;REGISTER PAIR

;AND SAVE

;PLACE CHAR IN LASTK
;SIGNIFY WE
;PRESSED A KEY

Machine code miscellany 195

CDATA: DEFU 0 ;CURRENT LINE DATA
STATES DB 0 j NO OF CHARS TO PRINT
LINE: DEFW 0 {LINE NUMBER

END

Hexadecimal Listing

7 E4A ED 56 C9 AF 32 E9 7E 3E
7 E52 28 ED 47 ED 5E FB C9 00

7E5A 00 00 CD 38 00 F3 F5 C5

7E62 D5 E5 DD E5 3A E9 7E A7
7E6A 20 31 3A 46 5C FE FF 20

7E72 37 3 A 82 5C FE 20 20 30
7E7A 3A 83 5C FE 17 20 29 3A

7E82 08 5C FE 0D 20 22 3E 04

7E8A 32 E9 7E 21 B2 7E 22 E7
7E92 7E 2A 49 5C 11 0A 00 19
7E9A 22 EA 7E 3A E9 7E 3D 32
7EA2 E9 7E 2A EA 7E CD BA 7E
7EAA DD El El D1 Cl FI FB C9
7EB2 E8 03 64 00 0A 00 01 00
7EBA DD 2A E7 7E DD 4E 00 DD
7EC2 46 01 3E 2F A7 3C ED 42

7ECA 30 FB 09 22 EA 7E CD DE
7ED2 7E DD 23 DD 23 DD E5 El
7EDA 22 E7 7E C9 32 08 5C 21
7EE2 3B 5C CB EE C9 00 00 00
7EEA 00 00 3A 46 5C FE FF 20
7EF2 37 3A 82 5C FE 20 20 30
7EFA 3A 83 5C FE 17 20

SORT

Another program which can be used with basic, this sort routine
which allows you to sort strings into alphabetical order. The routine,
when called in basic searches for the dimensional array as. It should
be first set up with the number of objects to sort and the length of
each string. If the string is not found or the length is too large then it
will exit from the sort routine with an appropriate error message.
When you wish to sort the string you simply call the machine code
from basic by using the instruction rand usr 32000. This will then sort

196 Machine code miscellany

out the string in ascending order. The method used to sort out the
strings is known as a 'Bubble Sort'. This method of sorting is not the
most efficient. However, under one second to sort out 100 strings of
25 characters in length is not slow!

The basic listing below demonstrates how the machine code pro¬
gram is used:

5 LET sort=32000
10 DIM a$(100,25)
20 FOR p=l to 100
30 FOR c—1 to 25
40 LET a$(p,c)=CHR$ ((RND*26)+

65)
50 NEXT c
60 NEXT p
70 PRINT #0;"Press L to list,S

to sort"
80 LET k*=INKEY$: IF k$="" THE

N GO TO 80
90 IF k$="L" OR k$="l" THEN GO

SUB 120: GO TO 70
100 IF k$<>"s“ AND k*<>"S" THEN
GO TO 80
110 CLS: PRINT "sortingRANDOM

IZE USR sort: BEEP 1,1: GO SUB 1
20: STOP

120 FOR p=l TO 100
130 PRINT a$(p)
140 NEXT p
150 RETURN

Here are the listings for the sort routine:

Assembler Listing

QRG 32800D
VARS EflU 23627D

START:
LD HL,(VARS)

TEST: LD A, (HL)
CP 128
JR Z,NOTFOUND

;SET HL TO POINT TO
;VARIABLE AREA

;GET 1ST BYTE OF VARIABLE
jEND OF VARS MARKER?
; FINISHED LOOKING AT VARS

Machine code miscellany 197

CP 193
JP Z, FOUND

AND 111000000
CP 011000008
JR Z, ADISIX
CP 11100000B
JR 1, ADI19
CP 10100000B

JR Z,SKIPC

;010 OR 110
INC HL
LD E, < HL)
INC HL
LD D, (HL)

INC HL
ADD HL, DE
JP TEST

NOTFOUND:
RST 08

DB 01
ERROR:

RST 08

DB 02

ADI19:
LD DE, 19

ADD HL, DE
JP TEST

SKIPC:
INC HL

BIT 7, < HL)

JR Z,SKIPC

ADISIX:
LD DE, 6

;IS IT A$?
1 YES FOUND IT!

MASK OFF TOP THREE BITS
SINGLE DATA
YES ADD 6
'FOR NEXT' VARIABLE?
YES ADD 19
VARIABLE NAME LARGER
THEN ONE LETTER?
YES THEN SKIP PASS
VARIABLE NAME

;GET LENGTH LOW

;GET LENGTH HIGH

j SKIP PASS VARIABLE
;TEST FOR NEXT VARIABLE

;VARIABLE NOT FOUND ERROR!

;SUBSCRIPT WRONG ERROR!

;GO PASS VARIABLE

;TEST NEXT VARIABLE

{SKIP PASS VARIABLE,
{NAME

{TILL BIT 7 IS SET

{GO PASS VARIABLE

198 Machine code miscellany

ADD HL, DE
JP TEST jTEST NEXT VARIABLE

FOUND;
INC HL

INC HL
INC HL 1 POINT TO NUMBER OF

;MUST BE TWO OR LES

LD A, (HL)
CP 2
JR NZ,ERROR jSHOULD BE TWO DIMENSIONS.

INC HL ;POINT TO NUMBER OF
;ELEMENTS

LD B, (HL) jNUMBER OF ELEMENTS

INC HL ;GET HIGH BYTE!

LD A, (HL)
AND A

JR NZ,ERROR ;LARGER THEN 255 ELEMENTS

INC HL
LD C, (HL) ;LENGTH OF STRINGS

INC HL
LD A, < HL)

AND A

JR NZ,ERROR ;LARGER THEN 255 CHARACTERS

INC HL

»HL NOW POINTS TO START OF STRING

LD A, C ;SAVE SIZE

LD (SIZE), A

SORT:

;HL POINTS TO START OF STRING
;B CONTAINS NUMBER OF STRINGS

;C CONTAINS LENGTH OF STRING

Machine code miscellany 199

NEXTS: PUSH BC
XOR A
LD (FLAG), A

PUSH HL

NEXTELi
PUSH HL
LD E, C
LD D, 0
ADD HL, DE
EX DE,HL

POP HL

CALL COMPARE
CALL C, SWAP

EX DE, HL

DJNZ MEXTEL

POP HL

POP BC
LD A,(FLAG)
AMD A
RET Z
DEC B
JR HZ,NEXTS

RET

j SAVE NUMBER AND LENGTH
;RESET SWAP FLAG

j SAVE ADDRESS OF FIRST
;STRING

;SAVE ADDRESS OF STRING
;GET LENGTH OF STRING
;AND PLACE IN DE REGISTER
{POINT TO SECOND STRING
{AND PLACE IN
{THE DE REGISTER
{RESTORE ADDRESS OF STRING

{COMPARE THE TWO STRINGS
{IN ASCENDING ORDER

{HL NOW POINTS TO
{NEXT STRING

{REPEAT CQMPARISION UNTIL
{DONE UP TO CURRENT NUMBER

{OF STRINGS
{GET ADDRESS OF
{FIRST STRING
{RESTORE COUNTERS
{GET SWAP FLAG
{TEST FOR ZERO
{NO SWAPS MADE SO SORTED
;ONE LESS TO SORT

rnitPAPr *

PUSH HL {SAVE REGISTERS

PUSH DE
PUSH BC

COMPARSi {COMPARE STRINGS

{ONE POINTED BY THE HL PAIR
;AND ONE POINTED BY
{THE DE PAIR

200 Machine code miscellany

BYEFC:

SWAP:

LD A, (DE) GET CHARACTER
SUB <HL) COMPARE AGAINST THE

SANE ONE IN
THE SECOND STRING

JR NZ,BYEFC NOT EQUAL EXIT FROM
COMPARISON

INC HL POINT TO NEXT CHARACTER
INC DE POINT TO NEXT CHARACTER
DEC C REPEAT UNTIL COMPARED

ALL CHARACTERS
JR NZ,COMPARS

POP BC ;RESTORE REGISTERS
POP DE
POP
RET

HL

; SWAP THE TWO STRINGS POINTED
; BY THE HL PAIR AND THE DE PAIR

PUSH BC ;SAVE REGISTERS
PUSH DE
PUSH HL

LD A, (SIZE) ;GET SIZE
LD C, A jPLACE IN THE LOW BYTE

;OF THE COUNTER
LD e, 0 5 NOT LARGER THEN 255

LD DE, BUFF ;DE POINTS TO THE BUFFER
LDIR j MOVE THE STRING FROM HL

j TO THE BUFFER

POP DE j PUT ORIGINAL HL IN DE
PUSH DE

LD C, A iGET COUNTER
LDIR ;MOVE TO SECOND STRING

LD HL,BUFF jPOINT TO BUFFER
LD C, A ;GET COUNT
LDIR ;AND SWAP

Machine code miscellany 201

LD (FLAG), A jSIGNIFY A SWAP WAS MADE

POP HL ;RESTORE REGISTERS
POP DE
POP BC
RET

BUFF: DS 255 ;BUFFER
FLAG: DB 0 ;SWAP FLAG
SIZE: DB 0 ;SIZE OF STRING

END

Hexadecimal Listing

7D00 2A 4B 5C 7E FE 80 28 1C
7D08 FE Cl CA 3B 7D E6 E0 FE
7D10 60 28 21 FE E0 28 11 FE
7D18 A0 28 14 23 5E 23 56 23
7D20 19 C3 03 7D CF 01 CF 02
7D28 11 13 00 19 C3 03 7D 23
7D30 CB 7E 28 FB 11 06 00 19
7D38 C3 03 7D 23 23 23 7E FE

7D40 02 20 E3 23 46 23 7E A7
7D48 20 DC 23 4E 23 7E A7 20
7D50 D5 23 79 32 A7 7E C5 AF
7D58 32 A6 7E E5 E5 59 16 00
7D60 19 EB El CD 77 7D DC 87
7D68 7D EB 10 F0 El Cl 3A A6
7D70 7E A7 C8 05 20 E0 C9 E5
7D78 D5 C5 1A 96 20 05 23 13

7DB0 0D 20 F7 Cl D1 EL C9 C5
7DB8 D5 E5 3A A7 7E 4F 06 00
7D90 11 A7 7D ED B0 D1 D5 4F
7D98 ED B0 21 A7 7D 4F ED B0
7DA0 32 A6 7E El D1 Cl C9 00
7DA8 00 00 00 00 00 00 00 00
7DB0 00 00 00 00 00 00 00 00
7DB8 00 00 00 00 00 00 00 08

202 Machine code miscellany

RECURSION

This program is similar to the music routine given in Chapter 9 but is
slightly more elaborate and complex. The tune I have given is the
one I translated (from the Spectrum manual) from the section on the
beep command. You can however write your own music. See the
table given in Chapter nine. The routine is called by setting the ix
register to point to the music data. The data represents the notes to
be played and the duration. Each note and duration is represented
by two bytes making a total of four. The first two bytes make up the
frequency of the note and the second two the duration. The nice
thing about this music routine is that it has the ability to play
substrings of music. The routine scans first of all for the frequency in
the table. If the low byte of the frequency is a one then this indicates
that the following two bytes are the address of a substring to be
played. The end of a string of music is indicated by having the byte
0. Substrings can be nested to many levels dependent on the ram

you have left. The whole principle behind this routine is that of
recursion. It's a routine which calls itself, in the same way as basic

subroutines can.

Assembler Listing

ORG 32000D

BEEPER EBU 03B5H ;ADDRESS OF BEEPER ROUTINE

LD IX, FRERE ;POINT TO MUSIC

CALL PLAY ;AND PLAY IT SAM!

RET

PLAY:

PUSH IX j SAVE STRING POSTION

LD L,(IX+8) ;LOU PITCH

LD H, (IX+1) ;HIGH PITCH

LD E,(IX+2) ;LOU DURATION

LD D,(IX+3) {HIGH DURATION

LD A, L {LOOK AT LOW PITCH

CP 01

JR Z, PLS {PLAY SUBSTRING

JR C, BYE {ZERO SO BYE

CALL BEEPER {PLAY NOTE

POP IX {GET STRING POSTION

LD DE, A {NEXT NOTE AND DURATION

ADD IX, DE

JR PLAY {KEEP PLAYING SAM!

Machine code miscellany 203

PLS:
INC IX ;POINT
INC IX ;TO RETURN POSTION

INC IX
LD L, H

;ADJUST SUBSTRING ADDRESS
LD H,E
POP AF i GET RID OF OLD STRING

;ADDRESS
PUSH IX j PUT IN NEW STRING ADDRESS

PUSH HL ;TRANFER SUBSTRING
POP IX ;ADDRESS TO IX REGISTER
CALL PLAY ;PLAY SUBSTRING
POP IX ;RETURNED FROM PLAYING

;SUBSTRING
JR

BYE:
PLAY ;KEEP PLAYING

POP
RET

IX

FRERE:
DB 61
DEFW FRERE1
DB 01
DEFW FRERE1

FRERE1: DB 01
DEFW TUNE1
DB 01
DEFW TUNE1

DB 01
DEFW TUNE2
DB 01
DEFW TUNE2

204 Machine code miscellany

TUNE1:

DB
DEFW
DB
DEFW

DB
DEFH
DB
DEFH

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

01
TUNE3
01
TUNE3

01
TUNE4
01
TUNE*?

66AH
105H
5B3H
125H
560H
9BH
5B3H
92H
66AH
105H
00

560H
137H

4C6H
15DH
43DH
188H
00

TUNE2:

Machine code miscellany 205

TUNE3;
DEFU 43DH
DEFU 126H
DEFW 3FFH
DEFU 67H
DEFU 43DH
DEFU 0C4H
DEFU 4C6H
DEFU 0AEH

DEFU 560H
DEFU 9BH
DEFU 5B3H
DEFU 92H
DEFU 66AH
DEFU 105H

DEFU 00

TUNE4i
DEFU 66AH
DEFU 10SH
DEFU 89AH
DEFU 0C4H
DEFU 66AH
DEFU 20AH
DEFU 00
END

Hexadecimal Listing

7D00 DD 21 41 7D CD 08 7D C9
7D08 DD E5 DD 6E 00 DD 66 01
7D10 DD 5E 02 DD 56 03 7D FE
7D18 01 28 0E 38 21 CD B5 03
7D20 DD El 11 04 00 DD 19 18
7D28 DF DD 23 DD 23 DD 23 6C
7D30 63 FI DD E5 E5 DD El CD
7D38 08 7D DD El 18 CA DD El

206 Machine code miscellany

7D40 C9 01 47 70 01 47 70 01
7D48 5F 7D 01 5F 70 01 75 70
7050 01 75 70 01 83 70 01 83
7D58 7D 01 A1 70 01 A1 70 6A
7060 06 05 01 B3 05 25 0.1 60
7D68 05 9B 00 B3 05 92 00 6A
7D70 06 05 01 00 00 60 05 37
7D78 01 C6 04 5D 01 30 04 88

7D80 01 00 00 3D 04 26 01 FF
7D88 03 67 00 3D 04 04 00 06
7D90 04 AE 00 60 05 9B 00 B3
7D98 05 92 00 6A 06 05 01 00
7OA0 00 6A 06 05 01 9 A 08 04
7DA8 00 6A 06 0A 02 00 00 60
7DB0 63 FI DD E5 E5 DD El CD
7DB8 08 7D DD El 18 CA DO El

7DC0 C9 01 47 70 01 47 7D 01
7DC8 5F 7D 01 5F 7D 01 75 70
7DD0 01 75 7D 01 83 7D 01 83
7DD8 7D 01 A1 7D 01 A1 70 6A
7DE0 06 05 01 B3 05 25 01 60
7DE8 05 9B 00 B3 05 92 00 6A
7DF0 06 05 01 00 00 60 05 37
7DF8 01 C6 04 50 01 3D 04 88

Appendix 1
Z80 instructions listed
by mnemonic
8 E 142 ADC A, (HL)

DD 8 E dd 221 142 dd ADC A,(IX 1 d)

FD 8 E dd 253 142 dd ADC A,(IY,d)

8 F 143 ADC A,A

88 136 ADC A,B

89 137 ADC A , C

8 A 138 ADC A , D

8B 139 ADC A/E

8 C 140 ADC A , H

8 D 141 ADC A,|_

CE XX 206 XX ADC A , N

ED 4 A 237 74 ADC HL,BC

ED 5 A 237 90 ADC HL,DE

ED 6A 237 106 ADC H L , H L

ED 7 A 237 122 ADC HL,SP

86 134 ADD A, (HL)

DD 86 dd 221 134 dd ADD A , (I X 1 d)

FD 86 dd 253 134 dd ADD A,(IY1d)

87 135 ADD A,A

80 128 ADD A , B

81 129 ADD A , C

82 130 ADD A , D

83 131 ADD A/E

84 132 ADD A,H

85 133 ADD A/L

C6 XX 198 XX ADD A , N

09 9 ADD HL,BC

19 25 ADD HL,DE

29 41 ADD HL,HL

39 57 ADD HL,SP

DD 09 221 9 ADD IX,BC

DD 19 221 25 ADD IX,DE

DD 29 221 41 ADD IX,IX

DD 39 221 57 ADD IX,SP

FD 09 253 9 ADD IY , B C

208 Appendix 1 - Z80 instructions listed by mnemonic

FD 19 253 25 ADD IY,DE
FD 29 253 41 ADD IY,IY
FD 39 253 57 ADD IY,SP
A6 166 AND (HL)

DD A 6 dd 221 166 dd AND (IX 1 d)

FD A6 dd 253 166 dd AND (IY’d)
A7 167 AND A

AO 160 AND B
A 1 161 AND C

A2 162 AND D

A3 163 AND E

A 4 164 AND H

A 5 165 AND L

E6 XX 230 XX AND N
CB 46 203 70 BIT 0 , (H L)
DD CB dd 46 221 203 dd 70 BIT 0,(IX'd)
FD CB dd 46 253 203 dd 70 BIT 0 , (I Y 1 d)
CB 47 203 71 BIT 0,A
CB 40 203 64 BIT 0 , B

CB 41 203 65 BIT 0,C

CB 42 203 66 BIT 0,D
CB 43 203 67 BIT 0,E

CB 44 203 68 BIT 0,H

CB 45 203 69 BIT 0,L

CB 4 E 203 78 BIT 1 ,(HL)
DD CB dd 4 E 221 203 dd 78 BIT 1 , CIX ' d)
FD CB dd 4 E 253 203 dd 78 BIT 1 ,(IY'd)
CB 4 F 203 79 BIT 1,A
CB 48 203 72 BIT 1,B

CB 49 203 73 BIT 1,C
CB 4 A 203 74 BIT 1,D

CB 4B 203 75 BIT 1,E

CB 4 C 203 76 BIT 1,H
CB 4 D 203 77 BIT 1,L

CB 56 203 86 BIT 2,(HL)

DD CB dd 56 221 203 dd 86 BIT 2 , (IX 1 d)
FD CB dd 56 253 203 dd 86 BIT 2,(IY1d)

CB 5 7 203 87 BIT 2,A
CB 50 203 80 BIT 2,B

CB 51 203 81 BIT 2 ,C
CB 52 203 82 BIT 2,D

CB 53 203 83 BIT 2,E
CB 54 203 84 BIT 2,H

CB 55 203 85 BIT 2,L

Appendix 1 - Z80 instructions listed by mnemonic 209

CB 5 E 203
DD CB dd 5 E 221
FD CB dd 5 E 253
CB 5 F 203
CB 58 203
CB 59 203
CB 5 A 203
CB 5 B 203
CB 5 C 203
CB 5 D 203
CB 66 203
DD CB dd 66 221
FD CB dd 66 253
CB 67 203
CB 60 203
CB 61 203
CB 62 203
CB 63 203
CB 64 203
CB 65 203
CB 6 E 203
DD CB dd 6 E 221
FD CB dd 6 E 253
CB 6 F 203
CB 68 203
CB 69 203
CB 6 A 203
CB 6B 203
CB 6 C 203
CB 6 D 203
CB 76 203
DD CB dd 76 221
FD CB dd 76 253
CB 77 203
CB 70 203
CB 71 203
CB 72 203
CB 73 203
CB 74 203
CB 75 203
CB 7 E 203
DD CB dd 7 E 221
FD CB dd 7 E 253
CB 7 F 203

BIT 3,(HL>
dd 94 BIT 3,(IX'd)
dd 94 BIT 3 , (IY 1 d)

BIT 3,A
BIT 3,B
BIT 3,C
BIT 3,D
BIT 3,E
BIT 3,H
BIT 3,L
BIT 4,(HL)

dd 102 BIT 4,(IX'd)
dd 102 BIT 4,(IY'd)

BIT 4,A
BIT 4,B
BIT 4,C
BIT 4 / D
BIT 4,E
BIT 4,H
BIT 4/L
BIT 5,(H L)

dd 110 BIT 5 , (IX ' d)
dd 110 BIT 5 , (IY 1 d)

BIT 5,A
BIT 5,B
BIT 5,C
BIT 5,D
BIT 5,E
BIT 5,H
BIT 5,L
BIT 6, (HL)

dd 118 BIT 6 , (IX ' d)
dd 118 BIT 6,(IY'd)

BIT 6, A
BIT 6,B
BIT 6 , C
BIT 6 , D
BIT 6,E
BIT 6,H
BIT 6,L
BIT 7,(HL>

dd 126 BIT 7 , (I X 1 d)
dd 126 BIT 7,(IY'd)

BIT 7,A

94
203
203
95
88
89
90
91
92
93
102
203
203
103
96
97
98
99
100
101
110
203
203
111
104
105
106
107
108
109
118
203
203
119
112
113
114
115
116
117
126
203
203
127

-Z80 instructions listed by mnemonic 210 Appendix 1

CB 78

CB 79

CB 7A

CB 7B

CB 7C

CB 7D

DC XXXX

FC XXXX

D4 XXXX

CD XXXX

C4 XXXX

F4 XXXX

EC XXXX

E4 XXXX

CC XXXX

3 F

BE

DD BE dd

FD BE dd

BF

B8

B9

BA

BB

BC

BD

FE XX

ED A 9

ED B9

ED A1

ED B1

2 F

27

35

DD 35 dd

FD 35 dd

3D

05

OB

OD

15

IB

ID

25

203 120

203 121

203 122

203 123

203 124

203 125

220 XXXX

252 XXXX

212 XXXX

205 XXXX

196 XXXX

244 XXXX

236 XXXX

228 XXXX

204 XXXX

63

190

221 190 d

253 190 d

191

184

185

186

187

188

189

254 XX

237 169

237 185

237 161

237 177

47

39

53

221 53 dd

253 53 dd

61

5

11

13

21

27

29

37

BIT 7,B

BIT 7,C

BIT 7,D

BIT 7,E

BIT 7,H

BIT 7,L

CALL C,NN

CALL M,NN

CALL NC,NN

CALL NN

CALL NZ,NN

CALL P,NN

CALL PE,NN

CALL PO,NN

CALL Z,NN

CCF

CP (HL)

CP (I X 1 d)

CP (I Y 1 d)

CP A

CP B

CP C

CP D

CP E

CP H

CP L

CP N

CPD

CPDR

CPI

CPIR

CPL

DA A

DEC (HL)

DEC (IX 1 d)

DEC (IY1d)

DEC A

DEC B

DEC BC

DEC C

DEC D

DEC DE

DEC E

DEC H

Appendix 1 -Z80 instructions listed by mnemonic 211

2B

DD 2 B

FD 2B

2D

3B

F3

10
FB

E3

DD E3

FD E3

08

EB

D9

76

ED 46

ED 56

ED 5 E

ED 78

DB XX

ED 40

ED 48

ED 50

ED 58

ED 60

ED 68

34

DD 34 dd

FD 34 dd

3 C

04

03

oc
14

13

1 C

24

23

DD 23

FD 23

2 C

33

ED AA

ED BA

43

221 43

253 43

45

59

243

16 XX

251

227

221 227

253 227

8

235

217

118

237 70

237 86

237 94

237 120

219 XX

237 64

237 72

237 80

237 88

237 96

237 104

52

221 52 dd

253 52 dd

60

4

3

12

20

19

28

36

35

221 35

253 35

44

51

237 170

237 186

DEC HL

DEC IX

DEC IY

DEC L

DEC SP

D I

DJNZ N

El

EX (SP),HL

EX (SP),IX

EX (SP),IY

EX A F,A F 1

EX DE,HL

EXX

HALT

IM 0

IM 1

IM 2

IN A,(C)

IN A,(N)

IN B,(C)

IN C,(C)

IN D,(C)

IN E,(C)

IN H,(C)

IN L,(C)

INC (H L)

INC (I X 1 d)

INC (IY r d)

INC A

INC B

INC BC

INC C

INC D

INC DE

INC E

INC H

INC HL

INC IX

INC IY

INC L

INC SP

IND

INDR

212 Appendix 1 -Z80 instructions listed by mnemonic

ED A 2

ED B2

E9

DD E 9

FD E9

DA XXXX

FA XXXX

D 2 XXXX

C3 XXXX

C 2 XXXX

F2 XXXX

EA XXXX

E 2 XXXX

CA XXXX

38 XX

18 XX

30 XX

20 XX

28 XX

OE XX

02

12

77

70

71

72

73

74

75

36 XX

DD 77 dd

DD 70 dd

DD 71 dd

DD 72 dd

DD 73 dd

DD 74 dd

DD 75 dd

DD 36 dd XX

FD 77 dd

FD 70 dd

FD 71 dd

FD 72 dd

FD 73 dd

FD 74 dd

237 162

237 178

233

221 233

253 233

218 XXXX

250 XXXX

210
195 XXXX

194 XXXX

242 XXXX

234 XXXX

226 XXXX

202 XXXX

56 XX

24 XX

48 XX

32 XX

40 XX

14 XX

2

18

119

112

113

114

115

116

117

54 XX

221 1 19 dd

221 112 dd

221 113 dd

221 114 dd

221 1 1 5 dd

221 116 dd

221 117 dd

221 54 i dd XX

253 119 dd

253 112 dd

253 113 dd

253 114 dd

253 115 dd

253 116 dd

INI

INIR

JP (HL)

JP (IX)

JP (IY)

JP C,NN

JP M,NN

JP NC,NN

JP NN

JP NZ, NN

JP P,NN

JP PE , NN

JP PO,NN

JP Z,NN

JR C,N

JR N

JR NC,N

JR N Z , N

JR Z,N

LD C,N

LD (BC),A

LD (DE), A

LD (HL),A

LD (HL),B

LD (HL),C

LD (HL),D

LD (HL),E

LD (HL),H

LD (HL),L

LD (HL),N

LD (I X ' d) , A

LD (IX'd),B

LD (I X 1 d) , C

LD (I X 1 d) , D

LD (IX ' d) , E

LD (IX'd),H

LD (IX'd),L

LD (IX1d) , N

LD (I Y 1 d) , A

LD (IY1d),B

LD (IY1d) , C

LD (IY'd)/D

LD (IY'd),E

LD (IY ' d) , H

Appendix 1-Z80 instructions listed by mnemonic 213

FD 75 dd

FD 36 dd XX

32 XXXX

ED 43 XXXX

ED 53 XXXX

22 XXXX

ED 63 XXXX

DD 2 2 XXXX

FD 22 XXXX

ED 73 XXXX

OA

1 A

7 E

DD 7 E dd

FD 7 E dd

3 A XXXX

7 F

78

79

7 A

7B

7 C

ED 57

7 D

3 E XX

ED 5 F

46

DD 46 dd

FD 46 dd

47

40

41

42

43

44

45

06 XX

ED 4 B XXXX

01 XXXX

4 E

DD 4 E dd

FD 4 E dd

4 F

48

253 117 dd

253 54 dd XX

50 XXXX

237 67 XXXX

237 83 XXXX

34 XXXX

237 99 XXXX

221 34 XXXX

253 34 XXXX

237 115 XXXX

10
26

126

221 126 dd

253 126 dd

58 XXXX

127

120

121

122

123

124

237 87

125

62 XX

237 95

70

221 70 dd

253 70 dd

71

64

65

66
67

68
69

6 XX

237 75 XXXX

1 XXXX

78

221 78 dd

253 78 dd

79

72

LD (IY'd),L

LD (IY'd),N

LD (NN),A

LD (NN),BC

LD (NN),D E

LD <NN),HL

LD (NN),H L

LD (NN),IX

LD C NN),IY

LD (N N),S P

LD A,(BC)

LD A,(D E)

LD A,(H L)

LD A , CIX 1 d)

LD A , (IY 1 d)

LD A,(NN)

LD A,A

LD A,B

LD A , C

LD A , D

LD A , E

LD A,H

LD A,I

LD A , L

LD A,N

LD A, R

LD B,(HL)

LD B , (IX 1 d)

LD B , (IY 1 d)

LD B,A

LD B,B

LD B,C

LD B,D

LD B,E

LD B,H

LD B,L

LD B,N

LD BC,(NN)

LD B C,NN

LD C,CHL)

LD C,(IX1d)

LD C,(IY1d)

LD C , A

LD C,B

-Z80 instructions listed by mnemonic 214 Appendix 1

49

4A

4B

4 C

4 D

56

DD 56 dd

FD 56 dd

57

50

51

52

53

54

55

16 XX

ED 5B XXXX

11
5 E

DD 5E dd

FD 5E dd

5 F

58

59

5 A

5B

5C

5 D

IE XX

66
DD 66 dd

FD 66 dd

67

60

61

62

63

6 4

65

26 XX

2A XXXX

ED 6B XXXX

21 XXXX

ED 47

73

74

75

76

77

86
221 86 dd

253 86 dd

87

80

81

82

83

84

85

22 XX

237 91 XXXX

17 XXXX

94

221 94 dd

253 94 dd

95

88
89

90

91

92

93

30 XX

102
221 102 dd

253 102 dd

103

96

97

98

99

100
101
38 XX

42 XXXX

237 107 XXXX

33 XXXX

237 71

LD C,C

LD C,D

LD C,E

LD C,H

LD C,L

LD D,(HL)

LD D,(IX’d)

LD D,(IY'd)

LD D , A

LD D,B

LD D,C

LD D,D

LD D,E

LD D,H

LD D,L

LD D,N

LD DE,(NN)

LD DE,NN

LD E,(HL)

LD E,(IX1d)

LD E , (I Y 1 d)

LD E,A

LD E,B

LD E,C

LD E,D

LD E , E

LD E,H

LD E,L

LD E,N

LD H,(HL)

LD H,(IX1d)

LD H,(IY’d)

LD H , A

LD H , B

LD H,C

LD H,D

LD H,E

LD H,H

LD H,L

LD H,N

LD HL,(NN)

LD H L,C NN)

LD HL,NN

LD I,A

Appendix 1 -Z80 instructions listed by mnemonic 215

DD 2 A XXXX 221 42 LD IX,(NN)

DD 21 XXXX 221 33 XXXX LD IX,NN

FD 2 A XXXX 253 42 LD IY,(NN)

FD 21 XXXX 253 33 XXXX LD I Y , NN

6 E 110 LD L,(HL)

DD 6 E dd 221 110 dd LD L,(IX'd)

FD 6 E dd 253 110 dd LD L,(IY'd)

6 F 111 LD L, A

68 104 LD L,B

69 105 LD L/C

6 A 106 LD L,D

6B 107 LD L,E

6 C 108 LD L , H

6 D 109 LD L,L

2 E XX 46 LD L, N

ED 4 F 237 79 LD R , A

ED 7B XXXX 237 123 XXXX LD SP,(NN)

F9 249 LD S P , H L

DD F 9 221 249 LD SP,IX

FD F9 253 249 LD SP, IY

31 XXXX 49 XXXX LD S P , NN

ED A8 237 168 LD D

ED B8 237 184 LD D R

ED AO 237 160 LD I

ED BO 237 176 LD I R

ED 44 237 68 NEG

00 0 NOP

B6 182 OR (HL)

DD B6 dd 221 182 dd OR (IX'd)

FD B6 dd 253 182 dd OR (IY1d)

B7 183 OR A

BO 176 OR B

B 1 177 OR C

B2 178 OR D

B3 179 OR E

B4 180 OR H

B5 181 OR L

F 6 XX 246 XX OR N

ED BB 237 187 OT DR

ED B3 237 179 OTIR

ED 79 237 121 OUT (C),A

ED 41 237 65 OUT (C),B

ED 49 237 73 OUT (C),C

ED 31 237 81 OUT (C),D

216 Appendix 1 - Z80 instructions listed by mnemonic

ED 59 237
ED 61 237
ED 69 237
D3 XX 211

ED AB 237
ED A3 237
FI 241

Cl 193
D 1 209
El 225
DD El 221
FD El 253
F 5 245

C 5 197
D 5 213

E5 229
DD E 5 221

FD E 5 253
CB 86 203
DD CB dd 86 221

FD CB dd 86 253
CB 87 203
CB 80 203
CB 81 203
CB 82 203
CB 83 203

CB 84 203
CB 85 203
CB 8 E 203
DD CB dd 8E 221
FD CB dd 8 E 253
CB 8 F 203
CB 88 203
CB 89 203
CB 8 A 203
CB 8 B 203
CB 8 C 203
CB 8 D 203
CB 96 203
DD CB dd 96 221
FD CB dd 96 253
CB 97 203
CB 90 203
CB 91 203

89 OUT (C),E
97 OUT (C) ,H
105 OUT (C) ,L
XX OUT (N) ,A
171 OUTD

163 OUTI

POP AF

POP BC

POP DE

POP HL

225 POP IX

225 POP IY

PUSH AF

PUSH BC

PUSH DE

PUSH HL

229 PUSH IX

229 PUSH IY

134 RES 0, (HL)
203 dd 134 RES 0 , (IX ' d)
203 dd 134 RES 0, (IY ’d)
135 RES 0,A

128 RES 0,B
129 RES 0,C

130 RES 0,D

131 RES 0,E
132 RES 0,H

133 RES 0,L
142 RES 1 , (HL)
203 dd 142 RES 1 , (IX ' d)
203 dd 142 RES 1,(IY'd)
143 RES 1,A
136 RES 1,B

137 RES i,c
138 RES 1,D
139 RES 1,E

140 RES 1,H
141 RES 1/L
150 RES 2, (HL)

203 dd 150 RES 2 , (I X 1 d)
203 dd 150 RES 2 , (IY ’ d)
151 RES 2,A

144 RES 2,B
145 RES 2,C

Appendix 1 - Z80 instructions listed by mnemonic 217

CB 92 203 146 RES 2,D

CB 93 203 147 RES 2,E

CB 94 203 148 RES 2,H

CB 95 203 149 RES 2,L

CB 9 E 203 158 RES 3 , (H L)

DD CB dd 9 E 221 203 dd 158 RES 3/(IX'd)

FD CB dd 9 E 253 203 dd 158 RES 3 , (IY 1 d)

CB 9 F 203 159 RES 3,A

CB 98 203 152 RES 3,B

CB 99 203 153 RES 3,C

CB 9 A 203 154 RES 3,D

CB 9B 203 155 RES 3,E

CB 9 C 203 156 RES 3,H

CB 9 D 203 157 RES 3,L

CB A6 203 166 RES 4,(HL)

DD CB dd A6 221 203 dd 166 RES 4 , (IX 1 d)

FD CB dd A6 253 203 dd 166 RES 4,(IY ' d)

CB A 7 203 167 RES 4,A

CB AO 203 160 RES 4,B

CB A 1 203 161 RES 4,C

CB A 2 203 162 RES 4,D

CB A3 203 163 RES 4,E

CB A 4 203 164 RES 4,H

CB A 5 203 165 RES 4,L

CB AE 203 174 RES 5,(HL)

DD CB dd AE 221 203 dd 174 RES 5 , (IX 1 d)

FD CB dd AE 253 203 dd 174 RES 5 , (IY ' d >

CB AF 203 175 RES 5,A

CB A8 203 168 RES 5,B

CB A9 203 169 RES 5,C

CB AA 203 170 RES 5,D

CB AB 203 171 RES 5,E

CB AC 203 172 RES 5 / H

CB AD 203 173 RES 5,L

CB B6 203 182 RES 6,(HL)

DD CB dd B6 221 203 dd 182 RES 6,(IX1d)

FD CB dd B6 253 203 dd 182 RES 6 , (IY 1 d)

CB B7 203 183 RES 6,A

CB BO 203 176 RES 6,B

CB B 1 203 177 RES 6 , C

CB B2 203 178 RES 6 , D

CB B3 203 179 RES 6 / E

CB B 4 203 180 RES 6,H

CB B 5 203 181 RES 6,L

218 Appendix 1 - Z80 instructions listed by mnemonic

CB BE 203 190 RES 7,(HL)
DD CB dd BE 221 203 dd 190 RES 7,CIX1d)
FD CB dd BE 253 203 dd 190 RES 7,CIY 1 d)
CB BF 203 191 RES 7,A
CB B8 203 184 RES 7,B
CB B9 203 185 RES 7,C
CB BA 203 186 RES 7,D
CB BB 203 187 RES 7,E
CB BC 203 188 RES 7,H
CB BD 203 189 RES 7,L
C9 201 RET
D8 216 RET C
F 8 248 RET M
DO 208 RET NC
CO 192 RET NZ
FO 240 RET P
E 8 232 RET PE
EO 224 RET PO
C 8 200 RET Z
ED 4 D 237 77 RET I
ED 45 237 69 RETN
CB 16 203 22 RL (HL)
DD CB dd 16 221 203 dd 20 RL CI X 1 d)
FD CB dd 16 253 203 dd 20 RL ClY'd)
CB 17 203 23 RL A
CB 10 203 16 RL B
CB 11 203 17 RL C
CB 12 203 18 RL D
CB 13 203 19 RL E
CB 14 203 20 RL H
CB 15 203 21 RL L
17 23 R LA
CB 06 203 6 RLC (HL)
DD CB dd 06 221 203 dd 6 RLC (I X1d)
FD CB dd 06 253 203 dd 6 RLC (IY'd)
CB 07 203 7 RLC A
CB 00 203 0 RLC B
CB 01 203 1 RLC C
CB 02 203 2 RLC D
CB 03 203 3 RLC E
CB 04 203 4 RLC H
CB 05 203 5 RLC L
07 7 RLCA
ED 6 F 237 1 1 1 RLD

Appendix 1 - Z80 instructions listed by mnemonic 219

CB 1 E 203

DD CB dd 1 E 221

FD CB dd 1 E 253

CB 1 F 203

CB 18 203

CB 19 203

CB 1 A 203

CB 1 B 203

CB 1 C 203

CB 1 D 203

1 F 31

CB OE 203

DD CB dd OE 221

FD CB dd OE 253

CB OF 203

CB 08 203

CB 09 203

CB OA 203

CB OB 203

CB OC 203

CB OD 203

OF 15

ED 67 237

C 7 199

D7 215

DF 223

E7 231

EF 239

F 7 247

FF 255

CF 207

9 E 158

DD 9 E dd 221

FD 9 E dd 253

9 F 159

98 152

99 153

9 A 154

9B 155

9 C 156

9 D 157

DE XX 222

ED 42 237

ED 52 237

RR (HL)

dd 30 RR CIX1d)

dd 30 RR CIY1d)

RR A

RR B

RR C

RR D

RR E

RR H

RR L

R R A

RRC (HL)

dd 14 RRC (I X1d)

dd 14 RRC (IY'd)

RRC A

RRC B

RRC C

RRC D

RRC E

RRC H

RRC L

RRCA

RR D

RST 0

RST 10

RST 18

RST 20

RST 28

RST 30

RST 38

RST 8

SBC A,(H L)

dd SBC A,(IX1d)

dd SBC A,(IY1d)

SBC A,A

SBC A,B

SBC A,C

SBC A , D

SBC A,E

SBC A,H

SBC A,L

SBC A,N

SBC HL,BC

SBC HL,DE

30

203

203

31

24

25

26

27

28

29

14

203

203

15

8
9

10
11
12
13

103

158

158

XX

66
82

220 Appendix 1 - Z80 instructions listed by mnemonic

ED 62 237 98 SBC HL,HL
ED 72 237 114 SBC HL,SP
37 55 SCF
CB C6 203 198 SET 0, (HL)
DD CB dd C6 221 203 dd 198 SET 0,(IX 'd)
FD CB dd C6 253 203 dd 198 SET 0,(IY1d)
CB C 7 203 199 SET 0, A
CB CO 203 192 SET 0,B
CB Cl 203 193 SET 0,C
CB C 2 203 194 SET 0 , D
CB C 3 203 195 SET 0,E
CB C 4 203 196 SET 0,H
CB C 5 203 197 SET 0,L
CB CE 203 206 SET 1, (HL)
DD CB dd CE 221 203 dd 206 SET 1,(IX1d)
FD CB dd CE 253 203 dd 206 SET 1,(IY1d)
CB CF 203 207 SET 1,A
CB C8 203 200 SET 1,B
CB C9 203 201 SET i,c
CB CA 203 202 SET 1,D
CB CB 203 203 SET 1,E
CB CC 203 204 SET 1,H
CB CD 203 205 SET 1/L
CB D6 203 214 SET 2,(HL)
DD CB dd D6 221 203 dd 214 SET 2, (IX 1 d)
FD CB dd D6 253 203 dd 214 SET 2 , (IY 1 d)
CB D 7 203 215 SET 2, A
CB DO 203 208 SET 2 / B
CB D 1 203 209 SET 2,C
CB D 2 203 210 SET 2,D
CB D 3 203 211 SET 2,E
CB D 4 203 212 SET 2 / H
CB D 5 203 213 SET 2,L
CB DE 203 222 SET 3,(HL)
DD CB dd DE 221 203 dd 222 SET 3,(IX1d)
FD CB dd DE 253 203 dd 222 SET 3,(IY'd)
CB DF 203 223 SET 3,A
CB D8 203 216 SET 3 , B
CB D9 203 217 SET 3 / C
CB DA 203 218 SET 3,D
CB DB 203 219 SET 3,E
CB DC 203 220 SET 3,H
CB DD 203 221 SET 3,L
CB E6 203 230 SET 4,(HL)

Appendix 1 - Z80 instructions listed by mnemonic 221

DD CB dd E6 221 203 dd 230 SET

FD CB dd E6 253 203 dd 230 SET

CB E7 203 231 SET

CB EO 203 224 SET

CB El 203 225 SET

CB E 2 203 226 SET

CB E3 203 227 SET

CB E 4 203 228 SET

CB E 5 203 229 SET

CB EE 203 238 SET

DD CB dd EE 221 203 dd 238 SET

FD CB dd EE 253 203 dd 238 SET

CB EF 203 239 SET

CB E 8 203 232 SET

CB E9 203 233 SET

CB EA 203 234 SET

CB EB 203 235 SET

CB EC 203 236 SET

CB ED 203 237 SET

CB F 6 203 246 SET

DD CB dd F 6 221 203 dd 246 SET

FD CB dd F 6 253 203 dd 246 SET

CB F 7 203 247 SET

CB FO 203 240 SET

CB FI 203 241 SET

CB F 2 203 242 SET

CB F 3 203 243 SET

CB F 4 203 244 SET

CB F 5 203 245 SET

CB FE 203 254 SET

DD CB dd FE 221 203 dd 254 SET

FD CB dd FE 253 203 dd 254 SET

CB FF 203 255 SET

CB F 8 203 248 SET

CB F 9 203 249 SET

CB FA 203 250 SET

CB FB 203 251 SET

CB FC 203 252 SET

CB FD 203 253 SET

CB 26 203 38 SLA

DD CB dd 26 221 203 dd 38 SLA

FD CB dd 26 253 203 dd 38 SLA

CB 27 203 39 SLA

CB 20 203 32 SLA

4,(lX'd>
4,(IY'd)
4,A
4,B
4,C
4rD

4,E
4,H
4, L
5 / (H L)
5 , (IX 1 d)
5 , (IY ' d)
5, A
5,B

5 / C
5,D

5,E

5, H
5 / L
6 , (H L)
6, (IX1d)
6,(IY'd)
6,A
6 , B
6 , C
6 , D
6 / E
6,H
6, L
7, (H L)
7 , (IX 1 d)
7,(IY'd)
7,A
7,B
7 / C
7,D
7,E
7,H
7 / L
(HL)
(IX 1 d)
(IY'd)
A
B

222 Appendix 1 -Z80 instructions listed by mnemonic

CB 21 203

CB 22 203
CB 23 203
CB 24 203

CB 25 203
CB 2 E 203

DD CB dd 2 E 221
FD CB dd 2 E 253
CB 2 F 203

CB 28 203
CB 29 203

CB 2 A 203

CB 2 B 203
CB 2 C 203
CB 2D 203
CB 3 E 203

DD CB dd 3 E 221
FD CB dd 3 E 253
CB 3 F 203

CB 38 203
CB 39 203

CB 3 A 203

CB 3 B 203

CB 3 C 203

CB 3D 203

96 150
DD 96 dd 221

FD 96 dd 253
97 151
90 144

91 145

92 146
93 147

94 148
95 149
D6 XX 214

EE XX 238
AE 174

DD AE dd 221

FD AE dd 253

AF 175

A8 168

A9 169

SLA C

SLA D

SLA E

SLA H

SLA L

S RA (HL)

dd 46 S RA (I X1d)

dd 46 SRA (IY'd)

S R A A

S R A B

S R A C

S R A D

S R A E

S R A H

S R A L

SRL (HL)

dd 62 SRL CIX 1 d)

dd 62 SRL (IY'd)

SRL A

SRL B

SRL C

SRL D

SRL E

SRL H

SRL L

SUB (HL)

dd SUB (I X ' d)

dd SUB (IY'd)

SUB A

SUB B

SUB C

SUB D

SUB E

SUB H

SUB L

SUB N

XOR N

XOR (HL)

dd XOR (IX1d)

dd XOR (IY'd)

XOR A

XOR B

XOR C

33

34

35

36

37

46

203

203

47

40

41

42

43

44

45

62

203

203

63

56

57

58

59

60

61

150

150

XX

XX

174

174

Appendix 1 -Z80 instructions listed by mnemonic 223

AA 170 XOR D

AB 171 XOR E

AC 172 XOR H

AD 173 XOR L

Appendix 2
Z80 instructions
listed by opcode
00 0

01 XXXX 1 XXXX

02 2

03 3

04 4

05 5

06 XX 6 XX

07 7

08 8

09 9

OA 10

OB 11

OC 12

OD 13

OE XX 14 XX

OF 15

10 16 XX

11 17 XXXX

12 18

13 19

14 20

15 21

16 XX 22 XX

17 23

18 XX 24 XX

19 25

1 A 26

IB 27

1C 28

1 D 29

1 E XX 30 XX

1 F 31

20 XX 32 XX

21 XXXX 33 XXXX

22 XXXX 34 XXXX

NOP

LD BC,NN

LD CBC),A

INC BC

INC B

DEC B

LD B,N

RLCA

EX A F,A F 1

ADD HL,BC

LD A,(BC)

DEC BC

INC C

DEC C

LD C,N

RRCA

DJNZ N

LD DE,NN

LD (D E),A

INC DE

INC D

DEC D

LD D,N

R LA

JR N

ADD HL,DE

LD A , (D E)

DEC DE

INC E

DEC E

LD E,N

RRA

JR NZ,N

LD HL,NN

LD <NN),HL

Appendix 2~Z80 instructions listed by opcode 225

23 35 INC HL

24 36 INC H

25 37 DEC H

26 XX 38 XX LD H,N

27 39 D A A

28 XX 40 XX J R Z,N

29 41 ADD HL,HL

2 A XXXX 42 XXXX LD HL,(NN)

2B 43 DEC HL

2 C 44 INC L

20 45 DEC L

2 E XX 46 LD L,N

2 F 47 CPL

30 XX 48 XX J R NC,N

31 XXXX 49 XXXX LD SP,NN

32 XXXX 50 XXXX LD (NN),A

33 51 INC SP

34 52 INC (HL)

35 53 DEC (HL)

36 XX 54 XX LD (HL),N

37 55 SCF

38 XX 56 XX JR C,N

39 57 ADD HL,SP

3 A XXXX 58 XXXX LD A,(NN)

3B 59 DEC SP

3 C 60 INC A

3D 61 DEC A

3 E XX 62 XX LD A , N

3 F 63 CCF

40 64 LD B,B

41 65 LD B,C

42 66 LD B,D

43 67 LD B,E

44 68 LD B,H

45 69 LD B / L

46 70 LD B, (HL)

47 71 LD B , A

48 72 LD C,B

49 73 LD C,C

4 A 74 LD C,D

4B 75 LD C,E

4 C 76 LD C,H

40 77 LD C,L

4 E 78 LD C, (HL)

226 Appendix 2 - Z80 instructions listed by opcode

4 F
50
51
52
53
54
55
56
57
58
59
5 A
5 B
5 C
5 D
5 E
5 F
60
61
62
63
64
65
66
67
68
69
6 A
6B
6C
6 D
6 E
6 F
70
71
72
73
74
75
76
77
78
79
7 A

LD C , A
LD D,B
LD D,C
LD D , D
LD D,E
LD D,H
LD D,L
LD D,(HL)
LD D,A
LD E,B
LD E,C
LD E,D
LD E,E
LD E,H
LD E/L
LD E,(HL)
LD E,A
LD H,B
LD H,C
LD H,D
LD H,E
LD H,H
LD H/L
LD H,(HL)
LD H,A
LD L/B
LD L,C
LD L,D
LD L,E
LD L,H
LD L,L
LD L,(HL>
LD L,A
LD (HL),B
LD (HL) ,C
LD (HL),D
LD (HL),E
LD (HL),H
LD (HL),L
HALT
LD (H L),A
LD A , B
LD A , C
LD A , D

79
80
81
82
83
84
85
86

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
1 1 1
112
113
114
115
116
117
118
119
120
121
122

Appendix 2-Z80 instructions listed by opcode 227

7B 123 LD A ,E

7 C 124 LD A

7D 125 LD A ,L

7E 126 LD A , (HL)

7 F 127 LD A ,A

80 128 ADD A , B

81 129 ADD A,C

82 130 ADD A,D

83 131 ADD A,E

84 132 ADD A , H

85 133 ADD A,L

86 134 ADD A , C H L)

87 135 ADD A,A

88 136 ADC A,B

89 137 ADC A , C

8 A 138 ADC A , D

8B 139 ADC A / E

8 C 140 ADC A , H

8 D 141 ADC A,L

8 E 142 ADC A , (H L)

8 F 143 ADC A,A

90 144 SUB B

91 145 SUB C

92 146 SUB D

93 147 SUB E

94 148 SUB H

95 149 SUB L

96 150 SUB (HL)

97 151 SUB A

98 152 SBC A,B

99 153 SBC A , C

9A 154 SBC A, D

9B 155 SBC A / E

9C 156 SBC A , H

9D 157 SBC A,L

9E 158 SBC A, (HL)

9 F 159 SBC A,A

AO 160 AND B

A1 161 AND C

A2 162 AND D

A3 163 AND E

A4 164 AND H

A5 165 AND L

A6 166 AND (HL)

228 Appendix 2- Z80 instructions listed by opcode

A7 167 AND A

A8 168 XOR B

A9 169 XOR C

AA 170 XOR D

AB 171 XOR E

AC 172 XOR H

AD 173 XOR L

AE 174 XOR <HL)

AF 175 XOR A

BO 176 OR B

B1 177 OR C

B2 178 OR D

B3 179 OR E

B4 180 OR H

B5 181 OR L

B6 182 OR (HL)

B7 183 OR A

B8 184 CP B

B9 185 CP C

BA 186 CP D

BB 187 CP E

BC 188 CP H

BD 189 CP L

BE 190 CP (HL)

BF 191 CP A

CO 192 RET NZ

Cl 193 POP BC

C2 xxxx 194 XXXX JP NZ,NN

C3 xxxx 195 XXXX JP NN

C4 xxxx 196 XXXX CALL NZ,NN

C5 197 PUSH BC

C6 XX 198 XX ADD A,N

C7 199 RST 0

C8 200 RET Z

C9 201 RET

CA xxxx 202 XXXX JP Z,NN

CC xxxx 204 XXXX CALL Z,NN

CD xxxx 205 XXXX CALL NN

CE XX 206 XX ADC A,N

CF 207 RST 8

DO 208 RET NC

D 1 209 POP DE

D 2 xxxx 210 JP NC,NN

D3 XX 211 XX OUT (N),A

Appendix 2 - Z80 instructions listed by opcode 229

D4 XXXX 212 XXXX CALL NC,NN

05 213 PUSH DE

D6 XX 214 XX SUB N

07 215 RST 10

08 216 RET C

09 217 EXX

DA XXXX 218 XXXX JP C,NN

DB XX 219 XX IN A,(N)

DC XXXX 220 XXXX CALL C,NN

DE XX 222 XX SBC A , N

DF 223 RST 18

EO 224 RET PO

El 225 POP HL

E2 XXXX 226 XXXX JP PO,NN

E3 227 EX (S P),H L

E4 XXXX 228 XXXX CALL PO , NN

E 5 229 PUSH HL

E6 XX 230 XX AND N

E7 231 RST 20

E8 232 RET PE

E9 233 JP (HL)

EA XXXX 234 XXXX JP PE,NN

EB 235 EX DE,HL

EC XXXX 236 XXXX CALL PE,NN

EE XX 238 XX XOR N

EF 239 RST 28

FO 240 RET P

FI 241 POP AF

F 2 XXXX 242 XXXX JP P,NN

F3 243 D I

F 4 XXXX 244 XXXX CALL P,NN

F 5 245 PUSH AF

F 6 XX 246 XX OR N

F 7 247 RST 30

F 8 248 RET M

F 9 249 LD SP,HL

FA XXXX 250 XXXX JP M,NN

FB 251 El

FC XXXX 252 XXXX CALL M,NN

FE XX 254 XX CP N

FF 255 RST 38

CB 00 203 0 RLC B

CB 01 203 1 RLC C

CB 02 203 2 RLC D

230 Appendix 2-Z80 instructions listed by opcode

CB 03 203 3 RLC E

CB 04 203 4 RLC H

CB 05 203 5 RLC L

CB 06 203 6 RLC (HL)

CB 07 203 7 RLC A

CB 08 203 8 RRC B

CB 09 203 9 RRC C

CB 0A 203 10 RRC D

CB OB 203 1 1 RRC E

CB OC 203 12 RRC H

CB OD 203 13 RRC L

CB OE 203 14 RRC CHL)

CB OF 203 15 RRC A

CB 10 203 16 RL B

CB 1 1 203 17 RL C

CB 12 203 18 RL D

CB 13 203 19 RL E

CB 14 203 20 RL H

CB 15 203 21 RL L

CB 16 203 22 RL CHL)

CB 17 203 23 RL A

CB 18 203 24 RR B

CB 19 203 25 RR C

CB 1 A 203 26 RR D

CB IB 203 27 RR E

CB 1C 203 28 RR H

CB 1 D 203 29 RR L

CB 1 E 203 30 RR CHL)

CB 1 F 203 31 RR A

CB 20 203 32 SLA B

CB 21 203 33 SLA C

CB 22 203 34 SLA D

CB 23 203 35 SLA E

CB 24 203 36 SLA H

CB 25 203 37 SLA L

CB 26 203 38 SLA CHL)

CB 27 203 39 SLA A

CB 28 203 40 S R A B

CB 29 203 41 SR A C

CB 2A 203 42 S R A D

CB 2B 203 43 S R A E

CB 2 C 203 44 S R A H

CB 2D 203 45 S R A L

CB 2 E 203 46 S R A CHL)

Appendix 2-Z80 instructions listed by opcode 231

CB 2 F 203

CB 38 203

CB 39 203

CB 3 A 203

CB 3 B 203

CB 3 C 203

CB 3D 203

CB 3 E 203

CB 3 F 203

CB 40 203

CB 41 203

CB 42 203

CB 43 203

CB 44 203

CB 45 203

CB 46 203

CB 47 203

CB 48 203

CB 49 203

CB 4 A 203

CB 4B 203

CB 4C 203

CB 4 D 203

CB 4 E 203

CB 4 F 203

CB 50 203

CB 51 203

CB 52 203

CB 53 203

CB 54 203

CB 55 203

CB 56 203

CB 57 203

CB 58 203

CB 59 203

CB 5 A 203

CB 5 B 203

CB 5 C 203

CB 5 D 203

CB 5 E 203

CB 5 F 203

CB 60 203

CB 61 203

CB 62 203

S R A A

SRL B

SRL C

SRL D

SRL E

SRL H

SRL L

SRL (HL)

SRL A

BIT 0,B

BIT 0,C

BIT 0,D

BIT 0,E

BIT 0 , H

BIT 0,L

BIT 0, (HL)

BIT 0 , A

BIT 1,B

BIT i,c

BIT 1/D

BIT 1,E
BIT 1 / H
BIT 1,L

BIT 1 , (HL)

BIT 1/A

BIT 2 / B

BIT 2 / C

BIT 2/D

BIT 2/E

BIT 2 , H

BIT 2/L

BIT 2, (HL)

BIT 2,A

BIT 3,B

BIT 3/C

BIT 3,D

BIT 3 , E

BIT 3,H

BIT 3/L

BIT 3, (HL)

BIT 3,A

BIT 4,B

BIT 4/C

BIT 4,D

47

56

57

58

59

60

61

62

63

64

65

66
67

68
69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86
87

88
89

90

91

92

93

94

95

96

97

98

232 Appendix 2 - Z80 instructions listed by opcode

CB 63 203 99 BIT 4,E

CB 64 203 100 BIT 4,H

CB 65 203 101 BIT 4,L

CB 66 203 102 BIT 4 , (H L)

CB 67 203 103 BIT 4,A

CB 68 203 104 BIT 5,B

CB 69 203 105 BIT 5,C

CB 6 A 203 106 BIT 5,D

CB 6B 203 107 BIT 5,E

CB 6 C 203 108 BIT 5,H

CB 6 D 203 109 BIT 5,L
CB 6 E 203 110 BIT 5, (HL)

CB 6 F 203 111 BIT 5,A

CB 70 203 112 BIT 6,B

CB 71 203 113 BIT 6,C

CB 72 203 114 BIT 6,D

CB 73 203 115 BIT 6/ E

CB 74 203 116 BIT 6,H

CB 75 203 117 BIT 6/L

CB 76 203 118 BIT 6,(HL)

CB 77 203 119 BIT 6, A

CB 78 203 120 BIT 7,B
CB 79 203 121 BIT 7/C
CB 7 A 203 122 BIT 7,D

CB 7B 203 123 BIT 7/E
CB 7 C 203 124 BIT 7,H
CB 7 D 203 125 BIT 7/ L

CB 7 E 203 126 BIT 7,(HL)

CB 7 F 203 127 BIT 7,A

CB 80 203 128 RES 0 , B

CB 81 203 129 RES 0,C

CB 82 203 130 RES 0,D

CB 83 203 131 RES 0/E
CB 84 203 132 RES 0 , H

CB 85 203 133 RES 0,L
CB 86 203 134 RES 0,(HL)

CB 87 203 135 RES 0 , A

CB 88 203 136 RES 1/B
CB 89 203 137 RES i,c

CB 8 A 203 138 RES 1/D
CB 8B 203 139 RES 1/E

CB 8 C 203 140 RES 1 / H
CB 8 D 203 141 RES 1/L
CB 8E 203 142 RES 1 , (HL)

Appendix 2-Z80 instructions listed by opcode 233

CB 8 F 203

CB 90 203

CB 91 203

CB 92 203

CB 93 203

CB 94 203

CB 95 203

CB 96 203

CB 97 203

CB 98 203

CB 99 203

CB 9 A 203

CB 9B 203

CB 9 C 203

CB 90 203

CB 9E 203

CB 9 F 203

CB AO 203

CB A 1 203

CB A 2 203

CB A3 203

CB A 4 203

CB A 5 203

CB A6 203

CB A7 203

CB A8 203

CB A9 203

CB AA 203

CB AB 203

CB AC 203

CB AD 203

CB AE 203

CB AF 203

CB BO 203

CB B1 203

CB B2 203

CB B3 203

CB B4 203

CB B5 203

CB B6 203

CB B7 203

CB B8 203

CB B9 203

CB BA 203

RES 1,A

RES 2,B

RES 2,C

RES 2,0

RES 2,E

RES 2 / H

RES 2,L

RES 2 , (H L)

RES 2,A

RES 3,B

RES 3 , C

RES 3,0

RES 3,E

RES 3,H

RES 3,L

RES 3,(HL)

RES 3,A

RES 4,B

RES 4,C

RES 4,0

RES 4,E

RES 4,H

RES 4,L

RES 4 , (H L)

RES 4,A

RES 5,B

RES 5,C

RES 5,0

RES 5,E

RES 5,H

RES 5,L

RES 5,(HL)

RES 5,A

RES 6,B

RES 6,C

RES 6,D

RES 6,E

RES 6,H

RES 6,L

RES 6,<HL)

RES 6,A

RES 7 / B

RES 7,C

RES 7,D

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

1 78

1 79

180

181

182

183

184

185

186

234 Appendix 2-Z80 instructions listed by opcode

CB BB 203 187 RES 7,E

CB BC 203 188 RES 7,H

CB BD 203 189 RES 7,L
CB BE 203 190 RES 7,<HL)

CB BF 203 191 RES 7,A

CB CO 203 192 SET 0,B

CB Cl 203 193 SET 0,C

CB C 2 203 194 SET 0,D

CB C3 203 195 SET 0,E

CB C 4 203 196 SET 0,H

CB C 5 203 197 SET 0,L

CB C 6 203 198 SET 0,<HL)
CB C 7 203 199 SET 0, A

CB C8 203 200 SET 1,B

CB C 9 203 201 SET 1,C

CB CA 203 202 SET 1/D

CB CB 203 203 SET 1/E
CB CC 203 204 SET 1 / H
CB CD 203 205 SET 1/L

CB CE 203 206 SET 1,(HL)

CB CF 203 207 SET 1/A
CB DO 203 208 SET 2,B

CB D 1 203 209 SET 2/C

CB D 2 203 210 SET 2/D

CB D3 203 211 SET 2 / E

CB D4 203 212 SET 2,H

CB D 5 203 213 SET 2,L

CB D6 203 214 SET 2,(HL)

CB D 7 203 215 SET 2/A

CB D8 203 216 SET 3,B

CB D 9 203 217 SET 3,C

CB DA 203 218 SET 3/D

CB DB 203 219 SET 3/E

CB DC 203 220 SET 3,H

CB DD 203 221 SET 3,L

CB DE 203 222 SET 3 / (H L)

CB DF 203 223 SET 3,A

CB EO 203 224 SET 4/B

CB El 203 225 SET 4,C

CB E 2 203 226 SET 4 , D

CB E3 203 227 SET 4/E

CB E4 203 228 SET 4/H

CB E 5 203 229 SET 4/L

CB E6 203 230 SET 4/(HL)

Appendix 2 - Z80 instructions listed by opcode 235

CB E7 203

CB E8 203

CB E9 203

CB EA 203

CB EB 203

CB EC 203

CB ED 203

CB EE 203

CB EF 203

CB FO 203

CB FI 203

CB F 2 203

CB F 3 203

CB F 4 203

CB F 5 203

CB F 6 203

CB F 7 203

CB F 8 203

CB F 9 203

CB FA 203

CB FB 203

CB FC 203

CB FD 203

CB FE 203

CB FF 203

DO 09 221

DD 19 221

DD 21 xxxx 221

DD 22 xxxx 221

DD 23 221

DD 29 221

DD 2 A xxxx 221

DD 2 B 221

DD 34 dd 221

DD 35 dd 221

DD 36 dd XX 221

DD 39 221

DD 46 dd 221

DD 4 E dd 221

DD 56 dd 221

DD 5 E dd 221

DD 66 dd 221

DD 6 E dd 221

DD 70 dd 221

SET 4,A

SET 5,B

SET 5,C

SET 5,D

SET 5,E

SET 5,H

SET 5,L
SET 5 , (H L)

SET 5,A

SET 6 , B

SET 6 , C

SET 6 , D

SET 6,E

SET 6,H

SET 6/L
SET 6, (HL)

SET 6,A

SET 7,B

SET 7 / C

SET 7,D

SET 7 / E

SET 7,H

SET 7,L

SET 7, (HL)

SET 7,A

ADD IX,BC

ADD IX , 0 E

XXXX LD IX,NN

xxxx LD (NN),IX

INC IX

ADD IX,IX

LD IX,(NN)

DEC IX

dd INC (IX ' d)

dd DEC (IX'd)

dd XX LD (IX1d),N

ADD IX,SP

dd LD B,(IX1d)

dd LD C , (IX 1 d)

dd LD D , (IX ' d)

dd LD E,(IX'd)

dd LD H , (IX 1 d)

dd LD L,(IX'd)

dd LD (IX 1 d) , B

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

9

2 5

33

34

35

41

42

43

52

53

54

57

70

78

86
94

102
110
112

236 Appendix 2 - Z80 instructions listed by opcode

DD 71 dd 221 113 dd LD (IX'd), c

DD 72 dd 221 114 dd LD (IX'd), D

DD 73 dd 221 115 dd LD (IX'd), E
DD 74 dd 221 116 dd LD (IX'd), H
DD 75 dd 221 117 dd LD (IX'd) , L
DD 77 dd 221 119 dd LD (IX’d), A
DD 7 E dd 221 126 dd LD A,(IX'd)
DD 86 dd 221 134 dd ADD A , (I X ' d)
DD 8 E dd 221 142 dd ADC A, (IX ' d)

DD 96 dd 221 150 dd SUB (IX'd)

DD 9 E dd 221 158 dd SBC A,(IX' d)
DD A6 dd 221 166 dd AND (IX'd)

DD AE dd 221 174 dd XOR (IX'd)
DD B6 dd 221 182 dd OR (IX'd)
DD BE dd 221 190 dd CP (IX'd)
DD El 221 225 POP IX

DD E3 221 227 EX (SP),IX
DD E 5 221 229 PUSH IX

DD E 9 221 233 J P (IX)

DD F 9 221 249 LD SP,IX
DD CB dd 06 221 203 dd 6 RLC (IX'd)
DD CB dd 0E 221 203 dd 14 RRC (IX'd)
DD CB dd 16 221 203 dd 20 RL (IX'd)
DD CB dd 1 E 221 203 dd 30 RR (IX'd)

DD CB dd 26 221 203 dd 38 SLA (IX'd)
DD CB dd 2 E 221 203 dd 46 S R A (IX'd)
DD CB dd 3 E 221 203 dd 62 SRL (IX'd)
DD CB dd 46 221 203 dd 70 BIT 0 , (IX ' d)

DD CB dd 4E 221 203 dd 78 BIT 1 , (IX ' d)
DD CB dd 56 221 203 dd 86 BIT 2,(IX’ d)

DD CB dd 5 E 221 203 dd 94 BIT 3 , (IX ' d)

DD CB dd 66 221 203 dd 102 BIT 4,(IX' d)
DD CB dd 6 E 221 203 dd 110 BIT 5,(IX' d)

DD CB dd 76 221 203 dd 118 BIT 6,(IX' d)

DD CB dd 7 E 221 203 dd 126 BIT 7,(IX' d)
DD CB dd 86 221 203 dd 134 RES 0,(IX' d)
DD CB dd 8 E 221 203 dd 142 RES 1,(IX' d)

DD CB dd 96 221 203 dd 150 RES 2 , (IX ' d)
DD CB dd 9 E 221 203 dd 158 RES 3,(IX' d)
DD CB dd A6 221 203 dd 166 RES 4,(IX' d)

DD CB dd AE 221 203 dd 174 RES 5 , (IX ' d)
DD CB dd B6 221 203 dd 182 RES 6, (IX' d)

DD CB dd BE 221 203 dd 190 RES 7,(IX' d)

DD CB dd C6 221 203 dd 198 SET 0,(IX' d)

Appendix 2-Z80 instructions listed by opcode 237

DD CB dd CE 221

DD CB dd D 6 221

DD CB dd DE 221

DD CB dd E6 221

DD CB dd EE 221

DD CB dd F 6 221

DD CB dd FE 221

ED 40 237

ED 41 237

ED 42 237

ED 43 XXXX 237

ED 44 237

ED 45 237

ED 46 237

ED 47 237

ED 48 237

ED 49 237

ED 4A 237

ED 4B XXXX 237

ED 4D 237

ED 4 F 237

ED 50 237

ED 51 237

ED 52 237

ED 53 XXXX 237

ED 56 237

ED 57 237

ED 58 237

ED 59 237

ED 5 A 237

ED 5 B XXXX 237

ED 5 E 237

ED 5 F 237

ED 60 237

ED 61 237

ED 62 237

ED 63 XXXX 237

ED 67 237

ED 68 237

ED 69 237

ED 6 A 237

ED 6B XXXX 237

ED 6 F 237

ED 72 237

dd 206 SET 1,(IX'd)

dd 214 SET 2,(IX,d)

dd 222 SET 3,(IX'd)

dd 230 SET 4,(IX'd)

dd 238 SET 5,(IX'd)

dd 246 SET 6,(IX,d)

dd 254 SET 7,ClX'd)

IN B,(C)

OUT (C),B

SBC HL,BC

XXXX LD <NN),BC

NEG

RETN

IM 0
LD I,A

IN C,(C)

OUT (C),C

ADC HL,BC

XXXX LD BC,(NN)

RETI

LD R , A

IN D,(C)

OUT (C),D

SBC HL,DE

XXXX LD (NN),DE

IM 1

LD A,I

IN E,(C)

OUT <C),E

ADC HL,DE

XXXX LD DE,(NN)

IM 2

LD A , R

IN H,(C)

OUT (C),H

SBC HL,HL

XXXX LD (NN),HL

RRD

IN L,(C)

OUT (C),L

ADC HL,HL

XXXX LD HL,(NN)

R LD

SBC HL,SP

203

203

203

203

203

203

203

64

65

66
67

68
69

70

71

72

73

74

75

77

79

80

81

82

83

86
87

88
89

90

91

94

95

96

97

98

99

103

104

105

106

107

11 1
114

238 Appendix 2-Z80 instructions listed by opcode

ED 73 XXXX 237 115 XXXX LD (NN),SP
ED 78 237 120 IN A , (C)
ED 79 237 121 OUT (C) , A
ED 7 A 237 122 ADC HL,SP
ED 7B XXXX 237 123 XXXX LD SP,CNN)
ED AO 237 160 LD I
ED A 1 237 161 CPI
ED A2 237 162 INI
ED A3 237 163 OUTI
ED A8 237 168 LD D
ED A9 237 169 CPD
ED AA 237 170 IND
ED AB 237 171 OUT D
ED BO 237 176 LD I R
ED B1 237 177 CPIR
ED B2 237 178 INIR
ED B3 237 179 OTIR
ED B8 237 184 LD D R
ED B9 237 185 CPDR
ED BA 237 186 I N DR
ED BB 237 187 OTDR
FD 09 253 9 ADD IY/BC
FD 19 253 25 ADD IY,DE
FD 21 XXXX 253 33 XXXX LD IY , NN
FD 22 XXXX 253 34 XXXX LD (N N) , IY
FD 23 253 35 INC IY
FD 29 253 41 ADD IY,IY
FD 2 A XXXX 253 42 LD IY , (N N)
FD 2 B 253 43 DEC IY
FD 34 dd 253 52 dd INC CIY'd)
FD 35 dd 253 53 dd DEC (IY'd)
FD 36 dd XX 253 54 dd XX LD CIY'd) r N
FD 39 253 57 ADD IY,SP
FD 46 dd 253 70 dd LD B , (IY ' d)
FD 4 E dd 253 78 dd LD C , (I Y ' d)
FD 5 6 dd 253 86 dd LD D , (I Y ' d)
FD 5 E dd 253 94 dd LD E,(IY ■ d)
FD 66 dd 253 102 dd LD H,(IY 1 d)
FD 6 E dd 253 110 dd LD L,(IY' d)
FD 70 dd 253 112 dd LD (IY'd) / B
FD 71 dd 253 113 dd LD (IY'd) ,c
FD 72 dd 253 114 dd LD (IY'd) ,0
FD 73 dd 253 115 dd LD (IY'd) t E
FD 74 dd 253 116 dd LD (IY'd)

Appendix 2 - Z80 instructions listed by opcode 239

FD 75 dd 253

FD 77 dd 253

FD 7 E dd 253

FD 86 dd 253

FD 8 E dd 253

FD 96 dd 253

FD 9 E dd 253

FD A6 dd 253

FD AE dd 253

FD B6 dd 253

FD BE dd 253

FD El 253

FD E3 253

FD E 5 253

FD E9 253

FD F 9 253

FD CB dd 06 253

FD CB dd 0E 253

FD CB dd 16 253

FD CB dd 1 E 253

FD CB dd 26 253

FD CB dd 2 E 253

FD CB dd 3 E 253

FD CB dd 46 253

FD CB dd 4E 253

FD CB dd 56 253

FD CB dd 5 E 253

FD CB dd 66 253

FD CB dd 6 E 253

FD CB dd 76 253

FD CB dd 7 E 253

FD CB dd 86 253

FD CB dd 8 E 253

FD CB dd 96 253

FD CB dd 9 E 253

FD CB dd A6 253

FD CB dd AE 253

FD CB dd B6 253

FD CB dd BE 253

FD CB dd C 6 253

FD CB dd CE 253

FD CB dd D6 253

FD CB dd DE 253

dd LD 1 (IY'd), L

dd LD I (IY'd), A

dd LD 1 \, CIY ' d)

dd ADD A,(IY' d)

dd ADC A , (IY ' d)

dd SUB (IY'd)

dd SBC A,(IY' d)

dd AND (IY'd)

dd XOR (IY'd)

dd OR (IY'd)

dd CP (IY'd)

POP IY

EX (SP),IY

PUSH IY

J P (IY)

LD S P , IY

dd 6 RLC (IY'd)

dd 14 RRC (IY'd)

dd 20 RL (IY'd)

dd 30 RR (IY'd)

dd 38 SLA (IY'd)

dd 46 S R A (IY'd)

dd 62 SRL (IY'd)

dd 70 BIT 0 , (I Y ' d)

dd 78 BIT 1 , (I Y ' d)

dd 86 BIT 2 , (IY ' d)

dd 94 BIT 3 , (IY ' d)

dd 102 BIT 4,(IY' d)

dd 110 BIT 5 , (IY ' d)

dd 118 BIT 6 , (IY ' d)

dd 126 BIT 7 , (IY ' d)

dd 134 RES 0 , (IY ' d)

dd 142 RES 1 , (IY ' d)

dd 150 RES 2 , (IY ' d)

dd 158 RES 3,(IY ' d)

dd 166 RES 4,(IY' d)

dd 174 RES 5 , (IY ' d)

dd 182 RES 6,(IY' d)

dd 190 RES 7 , (IY ' d)

dd 198 SET 0,(IY' d)

dd 206 SET 1 , (IY ' d)

dd 214 SET 2 , (IY ' d)

dd 222 SET 3 , (IY ' d)

117
119

126

134

142

150

158

166

174

182

190

225

227

229

233

249

203

203

203

203

203

203

203

203

203

203

203

203

203

203

203

203

203

203

203

203

203

203

203

203

203

203

203

240 Appendix 2-Z80 instructions listed by opcode

FD CB dd E6

FD CB dd EE

FD CB dd F6

FD CB dd FE

253 203 dd 230

253 203 dd 238

253 203 dd 246

253 203 dd 254

SET 4,(IY'd)

SET 5,(IY'd)

SET 6,(IY'd)

SET 7,(IY'd)

Appendix 3
Flag operation table

Flag table notation

Flags
Flag is unchanged by operation.

* Flag is affected according to result of operation.
P P/V is set according to parity result.
V P/V is set according to the overflow result.
0 Flag is set to zero
1 Flag is set to one.
Result of flag unknown.
f Contents of the interrupt flip flop.

Addressing
s Any 8 bit addressing mode A, B, C, D, E, FI, L, (FIL), (IX+dd),

(lY+dd)
r Any 8 bit register A, C, D, E, H, L
b Bit number 0-7
RR Any 16 bit register,
n Any 8 bit number

Flag operation table

Instruction CZP/VS N H Instruction c Z P/V s N H

ADC HL,RR * * V * 0 # CCF * — — — 0 #
ADC A,s * * V * 0 * CPD - * * # 1 #
ADC A,n * * V * 0 * CPDR - * * # 1 #
ADD A,s * * V * 0 * CPI - * * # 1 #
ADD A,n * * V * 0 # CPIR - * * # 1 #
ADD HL,RR * — - - 0 # CP s * * V * 1 *

ADD SP,RR * - — — 0 # CP n * * V * 1 *

ADD IX,RR * - — — 0 # CPL - - - - 1 1
ADD 1Y,RR * - — — 0 # DAA * * p * — *

AND s 0 * p * 0 1 DEC s - * V * 1 *

AND n 0 * p * 0 1 IN r,(C) -
* p * 0 0

BIT b,s - * # # 0 1 INC s - * V * 0 *

242 Appendix 3-Flag operation table

Instruction C Z PA/ S N H Instruction C Z PA/ S N H

IND - * # # 1 # RRA * _ _ 0 0
INI - * # # 1 # RRCA * _ — _ 0 0
INDR - 1 # # 1 # RLD (HL) _ * P * 0 0
INIR - 1 # # 1 # RRD (HL) — * P * 0 0
LD A/I - * f * 0 0 RL s * * P * 0 0
LD A,R - * f * 0 0 RLC s * * P * 0 0
LDD - # * # 0 0 RR s * * P * 0 0
LDI - # * # 0 0 RRC s * * P * 0 0
LDDR - # 0 # 0 0 SLA s * * P * 0 0
LDIR - # 0 # 0 0 SRA s * * P * 0 0
NEC * * V * 1 * SRL s * * P * 0 0
OR s 0 * p * 0 0 SBC HL,RR * * V * 1 #
OR n 0 * p * 0 0 SCF 1 _ _ _ 0 0
OTDR - 1 # # 1 # SBC A,s * * V * 1 *

OTIR - 1 # # 1 # SBC A,n * * V * 1 *

OUTD - * # # 1 # SUB s * * V * 1 *

OUTI - * # # 1 # SUB n * * V * 1 *

RLA * - - — 0 0 XOR s 0 * p * 0 0
RLCA * - - - 0 0 XOR n 0 * p * 0 0

Appendix 4
Spectrum monitor
assembler listing

ASEG
ORG 25500D

JP FSTART
ALTER E0U 39D

COMMA E8U / /
I

SAVEB: LD A, 0FFH
;IX POINTS TO START OF BLOCK

jDE CONTAINS NUMBER OF BYTES

CALL
RET

04C2H

LOADS: SCF
LD A,0FFH

CALL
RET

0556H

HEADIN:
LD DE, 17
LD IX, HEADER

XOR
SCF

A

CALL 0556H

LD A,(HEADER+11)
LD C, A
LD A,' *'
LD (HEADER+11), A
CALL CRLF

LD DE,HEADER+1

CALL PRTSTR
LD A,' '
CALL PRTCHR

244 Appendix4-Spectrum monitor-assembler listing

EX DE, HL
LD (HL), C
INC HL
INC HL
INC HL

LD A, (HL >
CALL HEXO
DEC HL
LD A, (HL)
CALL HEXO
DEC HL
LD A,' '
CALL PRTCHR

LD A. (HL)
CALL HEXO
DEC HL

LD A, (HL)
CALL HEXO

CALL
RET

CRLF

HEAOQUT:

LD DE, 17
LD IX,HEADER
XOR A
CALL 04C2H
RET

KEY: PUSH HL
PUSH BC
PUSH DE
CALL WAITS ; PAUSE FOR A WHILE

WAITK: LD A, (23611) ;LOOK AT FLAGS
BIT 5, A
JR Z, WAITK ;NO KEY PRESSED
RES 5, A ;RESET FLAG
LD (23611), A
POP DE

Appendix4- Spectrum monitor-assembler listing 245

POP BC
POP HL
RET

GETKEY:
CALL KEY
LD A, (23560) LOOK AT LAST-K

CALL PRTCHR
RET

0PENCH2:
LD A,02 ;OPENS CHANNEL 'S'

t
/ FOR PRINTING

CALL 1601H

RET
PRTCHR:

PUSH AF
PUSH AF
XOR A
LD (23692), A

POP AF
RST 10H
POP AF
RET

PRTSTR:
LD A, (DE) GET CHARACTER

CP IS THIS THE END
OF A STRING?

RET 1 YES THEN RETURN

CALL PRTCHR PRINT CHARACTER

INC DE POINT TO NEXT CHARACTER

JR PRTSTR

FSTART:
LD SP,STACK
CALL 0PENCH2

LD DE,HONE
CALL PRTSTR
LD DE,WELCHESS

CALL PRTSTR
CALL CRLF

VERYSTART:
INITV2: LD SP,STACK

LD A, 8
LD (23658), A ;CAPS ON

246 Appendix4-Spectrum monitor-assembler listing

INITV:

START:

VECTBL:

LD HL, ERRSP
LD <HL), LQW(VERYSTART)
INC HL
LD (HL)(HIGH(VERYSTART)
DEC HL
LD (23613), HL

LD HL, INITV
PUSH HL

CALL CRLF
LD A,' >'
CALL PRTCHR

CALL GETKEY
SUB 'A' ;IS IT IN THE ALPHABET?
RET C ; NO
CP 'S' -' A' +1
RET NC ; NO!
ADD A, A }$2
LD HL, VECTBL
LD E, A
LD D, 0
ADD HL, DE
LD E, (HL)
INC HL
LD D, (HL)
EX DE, HL
JP (HL) 1 JUMP TO COMMAND

DEFW ERROR
DEFW ERROR
DEFW ERROR
DEFW DUMP ; DUMP
DEFW MODIFY ;EDIT MEMORY
DEFW FILL ; FILL
DEFW GOTO ; GOTO
DEFW HUNT ; HUNT
DEFW IDENT ;IDENTIFY FILENAME
DEFW ERROR
DEFW ERROR

Appendix4-Spectrum monitor-assembler listing 247

DEFW LDADBYTES ;LOAD FROM TAPE
DEFW MOVE ;MOVE A BLOCK
DEFW ERROR
DEFW ERROR
DEFW PUMP ;PRINT DUMP
DEFW ERROR
DEFW CHREG ;MODIFY REGS
DEFW SAVEBYTES j SAVE MEMORY

WAITS:
LD BC,8000H
LD DE, 4000H
LD
LDIR
RET

HL,4000H

MODIFY:
CALL GETEXPR1 ;GET START ADDRESS

MODIFB: CALL HEXOD jOUTPUT START ADDRESS
LD A,' '
CALL PRTCHR
LD A, (HL)
CALL HEXO
LD A,' '
CALL PRTCHR

PUSH HL

CALL HEX I
POP HL
LD (HL), A
INC HL
CALL CRLF
JR MODIFY ;LOOP UNTIL FORCED

;OUT BY AN ERROR

GETEXPR2:
CALL HEXD

;GET TWO WORD EXPRESSION

PUSH HL {SAVE El

248 Appendix 4-Spectrum monitor-assembler listing

LD A,' '
CALL PRTCHR
CALL HEXD
PUSH HL
POP DE ;E2
POP HL ;GET El
RET iE1=HL E2=0E

GETEXPR3!
CALL GETEXPR2
PUSH HL
PUSH DE
CALL GETEXPR1
POP DE
POP HL
RET

GETEXPR1!

LD A,' '
CALL PRTCHR
CALL HEXD
PUSH HL
POP BC
CALL CRLF
RET ;E1=HL E2=DE E3=BC

LOADBYTES:
LD A,' '
CALL PRTCHR
CALL GETEXPR2

LD (DESTT), HL

LD A, E
OR D
JP Z,ERRORS

LD (LENTT), DE

LD DE,L0ADMESS
CALL PRTSTR

Appendix 4 - Spectrum monitor-assembler listing 249

LD DE,FILENAME
CALL PRTSTR

GETFILE:
CALL HEADIN

LD
LD
LD

DE, HEADER+1
HL, FILENAME
B, 10

COMPF: LD
RES
LD
RES
CP
JR

A, (DE)
5, A
C, (HL)
5,C
C
NZ,GETFILE

INC
INC
DJNZ

HL
DE
COMPF

LOADIFs LD
LD
CALL
RET

DE, (LENTT)
IX, (DESTT)
LOADS

DESTTi DEFW
LENTT: DEFW

0
0

CR E8U
LF E8U
WELCMESS: DEFM

DEFM
DEFM
DEFM

SAVEMESS: DEFM

0DH ; RETURN
0AH ;LINEFEED
CR,' *SBUG*7
7 (C) John Wilson'
7 1984,7
CR,7 %'

CR,'Press any key when ready*7

250 Appendix4-Spectrum monitor-assembler listing

LOADMESSi DEFM CR,'Waiting for $'
NOTHESS: DEFM CR/ROUTINE NOT IMPLEMENTED*7
ERRMESS: DEFM CR,' MERROR*#', CR,' $'
HOME: DEFM 22, 1, 1, CR,' $'

SAVEBYTES:
LD
CALL
CALL

A,' '
PRTCHR
GETEXPR2 ;GET 2 VALUES START

;AND NUMBER OF BYTES

a
OR
JP
LD

(HEADER+13), HL
A, E
D
Z,ERRORS
(HEADER+11), DE

LD
CALL

DE,SAVEMESS
PRTSTR

CALL
CALL
CALL
CALL

WAITS
WAITS
WAITS
GETKEY

LD
LD
LD

LD
INC

A, 3
DE,HEADER
HL,FILENAME
< DE), A
DE

LD
LDIR
CALL
CALL
CALL
CALL
LD
LD
CALL
RET

BC, 10

HEADOUT
WAITS
WAITS
WAITS
IX, (HEADER+13)
DE, (HEADER+11)
SAVEB

Appendix 4 - Spectrum monitor-assembler listing 251

HEXAS: PUSH HL
CALL HEXO
LD A,' '
CALL PRTCHR
POP HL
RET

LINE: LD B, 8
NBYTE: LD A, (HL)

CALL HEXAS
INC HL
DJNZ NBYTE
CALL CRLF
RET

DUMP:
LD A,' '
CALL PRTCHR
CALL GETEXPR1

ALOCK: LD C, B
BLOCK: CALL HEXOD

LD A,' *
CALL PRTCHR
CALL PRTCHR
CALL LINE
DEC C
JR NZ,BLOCK
CALL CRLF
CALL CRLF
CALL GETKEY
CP CR

JR Z, ALOCK
RET

PINE: LD B, 21

PBYTE: LD A, (HL)
CP 32
JR C,SBQGGY-2
CP 128
JR C,SBOGGY
LD A,'.'

252 Appendix4-Spectrum monitor-assembler listing

SBOGGY: CALL
INC
DJNZ
CALL
RET

PRTCHR
HL
PBYTE
CRLF

PUMP:
LD
CALL
CALL

PALOCK: LD

PLOCK: CALL
LD
CALL
CALL
CALL
DEC
JR

CALL
CALL

CALL
CP
JR
RET

A,' '
PRTCHR
GETEXPR1
C, 8

HEXOD
A,' '
PRTCHR
PRTCHR

PINE
C

NZ, PLOCK

CRLF
CRLF

GETKEY
CR
Z, PALOCK

ERROR: NOP
NOTIMP: PUSH

LD
CALL
POP
RET

DE
DE,NOTMESS
PRTSTR
DE

1ROUNTINES

; HEXO OUTPUT HEX NUMBER IN ACCUMULATOR
;HEX0D OUTPUT HEX WORD IN HL
jHEXI INPUT HEX NUMBER PUT IN ACCUMULATOR
;HEXD INPUT HEX WORD AND PUT INTO HL

Appendix 4-Spectrum monitor-assembler listing 253

HEXOO;
LD A, H
CALL HEXO
LD A, L

HEXO:
LD E, A
SRL A ;GET TOP FOUR BITS

{INTO LOWER NYBBLE

SRL A

SRL A
SRL A
CALL CONV {CONVERT TO ASCII
{RETURNS ASCII VALUE IN A
LD A, E {GET ORIGINAL VALUE

AND BFH j MASK OFF LOWER FOUR BITS

{CONVERT LAST HEX DIGIT
CONV:

ADD A, 30H
CP 3AH {IS DIGIT IN RANGE 0-??

JP N,DECD jYES THEN PRINT AND RETURN

;IN THE RANGE : 10-15 SO CONVERT TO A-F
ADD A, 7

DECDi CALL PRTCHR {PRINT A HEX DIGIT

RET

ERRORS; JP VERYSTART

HEXI;
CALL GETKEY
CALL C0NV2
LD E, A
CALL GETKEY
CALL C0NV2
SLA E {MOVE LOWER FOUR BITS UP
SLA E
SLA E
SLA E
OR E {MERGE IN SECOND DIGIT
RET
AND A
SBC A, 30H
CP BAH

C0NV2:

254 Appendix4-Spectrum monitor-assembler listing

RET C
AND A
SBC A,7
CP 10H
JR NC, ERRORS
RET

HEXD: CALL HEXI
PUSH AF
CALL HEXI
LD L, A

POP AF
LD H, A
RET

FILL: ;HL POINTS TO START ADDRESS
;DE POINTS END ADDRESS
jBC =NUMBER OF BYTES

LD A,7 '
CALL PRTCHR
CALL GETEXPR2

LD A,7 7
CALL PRTCHR

PUSH HL
EX DE, HL
AND A }CLEAR CARRY
SBC HL, DE
JP C, ERRORS
JP Z, ERRORS
PUSH HL
POP BC

POP HL
PUSH HL
POP DE
INC DE

PUSH HL
PUSH DE
CALL HEXI

Appendix4-Spectrum monitor-assembler listing 255

RETGET:

GOTO!

; POP

POP DE
POP HL

LD (HL), A
LDIR
CALL CRLF

RET

POP DE
LD HL, PUTREG
PUSH HL
PUSH DE
CALL GETREG
RET

LD A,' '
CALL PRTCHR
CALL HEXD
PUSH HL
LD A,' '
CALL PRTCHR

ALL REGS VALUES
CALL GETKEY
CP CR
JR Z,RETGET
CP COMMA
JP NZ, ERRORS
CALL HEXD

PUSH HL
LD DE,BRKP
LD BC,3
LDIR

POP HL
LD (HL), 0CDH
INC HL
LD (HL), LOU< BRK)

;GET ORGINAL

;GOTO

}SAVE BYTES

256 Appendix4-Spectrum monitor-assembler listing

INC HL
LD (HL), HIGH(BRK)
CALL GETREG
RET

PUTREG: LD (SAVESP), SP
LD SP,AHLREG+2
EX AF, AF'
EXX
PUSH HL
PUSH DE
PUSH BC
PUSH AF
EXX
EX AF, AF'
PUSH IX
PUSH HL
PUSH DE
PUSH BC
PUSH AF
LD SP, (SAVESP)
RET

GETREG! LD (SAVESP), SP
LD SP,AFREG
POP AF
POP BC
POP DE
POP HL
POP IX
EX AF, AF'
EXX

POP AF
POP BC
POP DE
POP HL
EX AF, AF'
EXX
LD SP, (SAVESP)
RET

BRKi ; PUSH ALL VALUES ON STACK
CALL PUTREG

Appendix4-Spectrum monitor-assembler listing 257

POP HL ;RET ADDRS

DEC HL
DEC HL
DEC HL
; BACK SPACE 3 INSTR

CALL CRLF
LD A,
CALL PRTCHR
CALL HEXOD
EX DE, HL 1DEST
LD HL,BRKP
LD BC, 3
LDIR ;PUT BYTES BACK

j PUT BACK FOUR BYTES
;DISPLAY PC
j DISPR;
CALL DISPR
RET

OUTRE6: LD B,4
NXTREG: LD E, (HL) ;LOU

INC HL
LD D, < HL)

PUSH HL
EX DE, HL

DI1R; CALL HEXOD
LD A,' '
CALL PRTCHR
CALL PRTCHR
POP HL
INC HL
DJNZ NXTREG
RET

DISPR: CALL CRLF
LD DE,REGHESS
CALL PRTSTR
LD HL,AFREG
CALL OUTREG
CALL IXOUT {DO IX REG
CALL CRLF {NOW ALTERNATE

258 Appendix 4 - Spectrum monitor-assembler listing

CALL OUTREG
RET

IXOUTi
DOING: LD A, (HL)

PUSH AF
INC HL
LD A, (HL)
CALL HEXO
POP AF
CALL HEXO
INC HL
LD A,' '
CALL PRTCHR
CALL PRTCHR
RET

CHREG:
;GETREG VALUE

LD A,' '
CALL PRTCHR
CALL GETKEY
CP ALTER
JR NZ, LOO
CALL GETKEY

ADD A,' I' A'

LD HL,LOOKUP
LD
CPIR

BC, LENTAB

JP NZ,DISPR
DEC HL
LD DE,LOOKUP
AND A
SBC HL, DE
LD DE,AFREG
SLA L
ADD HL, DE
INC HL

;SAVE LOW 8YTE

;OUT HIGH
;GET LOW
;AND OUT

Appendix4-Spectrum monitor-assembler listing 259

LD A,' '
CALL PRTCHR
LD A, (HL) ; LOW
CALL HEXO
DEC HL
LD A, (HL) ; HIGH
CALL HEXO
INC HL
LD A,' '
CALL PRTCHR

CALL HEXI

LD (HL), A
DEC HL
CALL HEXI
LD (HL), A
RET

LOOKUP:
DB 'AVBVDVHVX'
DB 'IV J'.'LVP'

; A' B' D' H'

LENTAB EBU 9D

HOVE: LD A,' '
CALL PRTCHR
CALL GETEXPR3

GETBC: PUSH HL
AND A
SBC HL, DE
JR NC,DSWQP
POP HL
EX DE, HL

DSUOP:
JR GETBC

i HL =NUMBER OF BYTES
JDE =START ADDRESS
; BC ^DESTINATION
;(SP)=END ADDRESS
EX DE, HL
;DE =NUM HL=START

iBC=DEST

260 Appendix4-Spectrum monitor-assembler listing

PUSH BC
PUSH DE
POP BC
POP DE

POP AF

PUSH HL

AND A
SBC HL, DE
POP HL
JR C,BACKW
LDIR
RET

BACKW:
ADD HL, BC
DEC HL
EX DE, HL
ADD HL, BC
DEC HL
EX DE, HL
LDDR
RET

IDENT:
LD A,' '
CALL PRTCHR
CALL GETKEY
CP 0D
RET Z
CP 65
JP C, ERRORS
LD HL, FILENAME
LD B, 10
LD C, 32

CLBUFF; LD (HL >,C
INC HL
DJNZ CLBUFF

iSAVE DEST
j SAVE COUNT
j PUT IN DE
;GET DEST

;GET RID OF END
;STACK CONTAINS START
,’GET START
jHL CONTAINS START
jDE DESTINATION
;BC NUMBER OF BYTES
jSTACK CONTAINS

Appendix 4 - Spectrum monitor-assembler listing 261

LD HL, FILENAME
LD B, 9

PUTBUF: LD
DEC
RET

(HL), A
B
Z

INC
CALL

HL
GETKEY

CP
RET

0DH
Z

CP
JP
JR

65
C,ERRORS
PUTBUF

HUNT:

LD
CALL
CALL
PUSH
EX
AND

A,' '
PRTCHR
GETEXPR2
HL ;SAVE START
DE, HL
A

SBC
JP
JP
PUSH
POP
POP
LD
CALL

HL, DE
C,ERRORS
Z, ERRORS
HL
BC
HL
A,' '
PRTCHR

PUSH
PUSH
CALL
POP
POP

HL
DE
HEX I
DE
HL

262 Appendix 4-Spectrum monitor-assembler listing

COMP: CP
PUSH
JR
CALL
CALL
CALL
CP
JR

NFOUND:
INC
DEC
LD
OR
JR
POP
JR

BHUN:
POP
RET

CRLF: LD
CALL
RET

REGMESS:
DEFM

DEFM
DEFM
DB

REGS:
AFREG: DEFW
BCREG: DEFW
DEREG: DEFW
HLREG: DEFW
IXREG: DEFW
AAFREG: DEFW
ABCREG: DEFW
ADEREG: DEFW
AHLREG: DEFW

BRKP: DB
SAVESP: DB

(HL)
AF
NZ, NFOUND
CRLF
HEXOD
GETKEY
SDH
NZ,BHUN

HL
BC
A, B
C
Z,BHUN
AF

COMP

AF

A, CR
PRTCHR

' AF BC
0000::0000::

' DE HL
'IX'
CR,' *'

0000H AF
0000H BC
0000H DE
0000H HL
0000H IX
0000H AF'
0000H BC'
0000H DE'
0000H HL'

0, 0,0
0,0

Appendix 4-Spectrum monitor-assembler listing 263

HEADER: DS 17
FILENAME:

DS 10
DB CR,' ♦'

DS 75
STACK: DB 0
ERRSP: DEFW 0

END

Index

A
Accumulator 19,29,31
ADC 32-34
addition 29-32,70
addressing 10

register indirect 27
index 27
indirect 30
ports 54
screen 121-139
relative 37

AND 59
animation 127-129
A register see Accumulator
arithmetic operations 29-40
assembler 13-17,84-87
attribute file 121-139
Auto Line Number program

191-195

B
BASIC loader 78-78
binary system 8-11
BIT 53
block compare 65-66
block manipulation 64-71
block transfer 66-69
monitor 75

border
scrolling attribute program
85-95

split colour program 144-145
branching 51-52
Brickout program 156-169

C
CALL 21,38-39
Carry flag 19,32,41,70
cassette recorder 56
loading/saving 103-114

CCF 70
channel routines 94-114
Clock program 150-155
comments 15
compare 51-52
CPD 66
CPDR 65
CPI 66
CP1R 65
CPL 70

D
DAA 70
DEC 29,32-33
decimal system 9-11
DEFB 14-15
DEFM 65
DEFS 15
DEFW 15
disassembler 14
DJNZ 37
Dump (monitor) 73

E
Edit (monitor) 73
EQU 15
error messages 39-40

266 Index

F
Fill memory (monitor) 74
flags 19-20
floating point arithmetic 40

ROM routines 115-120
F register 19

G
Goto address (monitor) 74

H

hexadecimal system 12-13
Hex Monitor 77-78
H flag 20
HL registers 20
Hunt byte (monitor) 74

I

Identify filename (monitor) 75
IN 55
INC 29,32-33
index addressing mode 27
indexing 30
indirect addressing 30
input/output 53-58
instruction set
AND 60
OR 62
XOR 63

integers negative 11-12
interfacing 53-58
interrupt routines 18,140-155
I register 18
IX registers 18,30
IY registers 18,28,30

J
JP 35
jump
conditional 35
relative 36

K
keyboard 54-55

L
labels 15
Large Print program 183-188
LDDR 67-68
LDIR67
loader program 77-78
loading operations 22-27
monitor 75
ROM routines 103-114

logical operations 34,59-63

M
masking 55
Maze Generator program

169-183
memory addressing 10
mnemonics 13,84
mode 1 interrupts 141
mode 2 interrupts 141-144
monitor 14
program 72-84

Move block (monitor) 75
multiplication 33,42,46-48,70
music 99

N
NEG 70
negative integers 11-12
nesting 39
N flag 19
number systems 8-13
nybble 13

O
OR 62
OUT 56
output 56

P

Parity overflow flag 20
PC register 20
pixel

scroll program 188-191
POP 21

Index 267

port
addressing 54
reading 55

print ASCI I (monitor) 76
printer 140
printing
large print 183-188
ROM routines 94-97
to screen 127-129

pseudo operators 14,65
PUSH 21

R
reading
keyboard 54-55
port 54

recursion 202-206
register indirect addressing 27
Register modify (monitor) 76
registers 17-28
pairs 17-18,20-24

relative addressing 37
remarks 15
RES 53
RETURN 39
RL 42
RLC 41
RLD45
ROM routines 94-120
floating point 115-120
printing 94-97
screen addressing 97
tape loading/saving 103-114

rotating operations 41
RR 43
RRC 43
R register 18

S
saving operations 27
monitor 77
ROM routines 103-114

SBC 32-34

SCF 70
screen
addressing 97
file 121-139

scrolling program 85-93
pixel scroll 188-191

SET 52
shifting operations 44
signed integer representation

11-12
Sign flag 20
SLA 44
Sort program 195-201
sound generation 57-58
SP register 20
SRA45
SRL 44
stack 21-22
streams 94
SUB 31
subtraction 31-35,38

T
tape loading/saving 103-114
timing program 150-155
toggling 62
Trace program 146-150
truth tables
AND 60
OR 61
XOR62

two's complement 12,70

V
vectored processing 143

X
XOR 62

Z
Z80 chip 9-14,17,19-21,23,25,27
Zero flag 20

More Pan/PCN Computer Library titles for the
Sinclair ZX Spectrum

Robert Erskine & Humphrey Walwyn,
Paul Stanley & Michael Bews
Sixty Programs for the Sinclair ZX

Spectrum £5.95 0 330 28260 3

A massive software library for the price of a single cassette. Explosive games,

dynamic graphics and invaluable utilities, this specially commissioned

collection takes BASIC to the limits and beyond.

Four of the country's best-selling software writers have pooled their talents to

bury programming cliches and exploit your micro's potential to the full.

Whether you are a games player or a more serious user, here's the book to

make your micro work for you.

MASTER YOUR MICRO’S MOTHER TONGUE!

This practical guide to machine code programming lets the
dedicated user harness the full power of the Spectrum’s

hardware and escape the confines of BASIC. The path to
professional programming expertise is made clear as you

are introduced to the Z80 instruction set and learn to
combine the separate elements of machine code into the
fast and efficient code found in commercial programs.

The annotated example programs allow you to enter and
use fast screen handling routines and sorts in your own
programs, debug them with the aid of the trace facility,

run them in conjunction with the on-screen clock and lots
more, while guiding you through the machine code maze

(there’s even a program to generate these) and illustrating
the practical application of the techniques described.

The ROM routines, interrupt handling and programming
principles are all covered, making this an essential

reference and guide both for the beginner and the expert
who’s ready to branch out after succeeding in ‘Cracking

the Code’.

Cover photography by Peter Williams

with grateful acknowledgement for the kind assistance of
Chubb & Son's Lock & Safe Co. Ltd.

